【題目】下列兩點中,關(guān)于y軸對稱的是( )
A. (1,-3)和(-1,3) B. (3,-5)和(-5,3) C. (5,-4)和(5,4) D. (-2,4)和(2,4)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△AOB中,OA=OB=8,∠AOB=90°,矩形CDEF的頂點C、D、F分別在邊AO、OB、AB上。
(1)如圖1,若C、D恰好是邊AO、OB的中點,則此時矩形CDEF的面積為_________;
(2)如圖2,若=,求矩形CDEF面積的最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個問題:探究函數(shù)y=的圖象與性質(zhì)。小慧根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y=的圖象與性質(zhì)進行了探究。下面是小慧的探究過程,請補充完成:
(1)函數(shù)y=的自變量x的取值范圍是__________;
(2)列出y與x的幾組對應(yīng)值。請直接寫出m的值,m=________;
x | … | -3 | -2 | 0 | 1 | 1.5 | 2.5 | m | 4 | 6 | 7 | … |
y | … | 2.4 | 2.5 | 3 | 4 | 6 | -2 | 0 | 1 | 1.5 | 1.6 | … |
(3)請在平面直角坐標(biāo)系xOy中,描出以上表中各對對應(yīng)值為坐標(biāo)的點,并畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的兩條性質(zhì):
①_____________________________________________;
②____________________________________________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在□ABCD中,AE⊥BC于E,E恰為BC的中點,tanB=2。
(1)求證:AD=AE;
(2)如圖2,點P在BE上,作EF⊥DP于點F,連結(jié)AF,求證:DF-EF=AF;
(3)請你在圖3中畫圖探究:當(dāng)P為射線EC上任意一點(P不與點E重合)時,作EF⊥DP于點F,連結(jié)AF,線段DF、EF與AF之間有怎樣的數(shù)量關(guān)系?直接寫出你的結(jié)論為____________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是直線AB上一點,OC為任意一條射線,OD平分∠BOC,OE平分∠AOC.
(1)指出圖中∠AOD與∠BOE的補角;
(2)試判斷∠COD與∠COE具有怎樣的數(shù)量關(guān)系.并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在長和寬分別是 、 的矩形紙片的四個角上都剪去一個邊長為 的小正方形,折成一個無蓋的紙盒.
(1)用a , b , x表示紙片剩余部分的面積;
(2)當(dāng)a=16,b=12,且剪去部分的面積等于剩余部分的面積的一半時,求小正方形的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,已知△ABC中,∠BAC=90°,AB=AC,AE是過點A的一條直線,且B點和C點在AE的異側(cè),BD⊥AE于D點,CE⊥AE與E點.
(1)求證:BD=DE+CE
(2)若直線AE繞點A旋轉(zhuǎn)到圖2所示的位置時(BD<CE)其余條件不變,問BD 與DE,CE的關(guān)系如何?請予以證明.
(3)若直線AE繞點A旋轉(zhuǎn)到圖3所示的位置時(BD>CE)其余條件不變,問BD 與DE,CE的關(guān)系如何?直接寫出結(jié)果,不需證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com