【題目】如圖所示,矩形ABCD的面積為128cm2 , 它的兩條對(duì)角線(xiàn)交于點(diǎn)O1 , 以AB、AO1為兩邊鄰作平行四邊形ABC1O1 , 平行四邊形ABC1O1的對(duì)角線(xiàn)交于點(diǎn)O2 , 同樣以AB、AO2為兩鄰邊作平行四邊形ABC2O2 , …,依此類(lèi)推,則平行四邊形ABC7O7的面積為 .
【答案】
【解析】解:根據(jù)矩形的對(duì)角線(xiàn)相等且互相平分,
平行四邊形ABC1O1底邊AB上的高為 BC,
平行四邊形ABC2O2底邊AB山的高為 × BC=( )2BC,
所以平行四邊形ABCnOn底邊AB上的高為×( )nBC,
∵S矩形ABCD=ABBC=128,
∴S平行四邊形ABCnOn=AB×( )nBC=128×( )n ,
∴當(dāng)n=7時(shí),平行四邊形ABC7O7的面積為=128×( )7 ,
所以答案是: .
【考點(diǎn)精析】根據(jù)題目的已知條件,利用平行四邊形的性質(zhì)和矩形的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線(xiàn)互相平分;矩形的四個(gè)角都是直角,矩形的對(duì)角線(xiàn)相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a、b、c均為實(shí)數(shù),且 +|b+1|+(c+3)2=0,求方程ax2+bx+c=0的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發(fā)現(xiàn),當(dāng)兩個(gè)全等的直角三角形如圖1或圖2擺放時(shí),都可以用“面積法”來(lái)證明,下面是小聰利用圖1證明勾股定理的過(guò)程:
將兩個(gè)全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2
證明:連結(jié)DB,過(guò)點(diǎn)D作BC邊上的高DF,則DF=EC=b﹣a
∵S四邊形ADCB=S△ACD+S△ABC= b2+ ab.
又∵S四邊形ADCB=S△ADB+S△DCB= c2+ a(b﹣a)
∴ b2+ ab= c2+ a(b﹣a)
∴a2+b2=c2
請(qǐng)參照上述證法,利用圖2完成下面的證明.
將兩個(gè)全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點(diǎn)E,交BC于點(diǎn)D,過(guò)點(diǎn)E做直線(xiàn)l∥BC.
(1)判斷直線(xiàn)l與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若∠ABC的平分線(xiàn)BF交AD于點(diǎn)F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點(diǎn),若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒,連接DE,當(dāng)△BDE是直角三角形時(shí),t的值______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,∠A=30°,∠B=60°。
(1)作∠B的平分線(xiàn)BD,交AC于點(diǎn)D;作AB的中點(diǎn)E(要求:尺規(guī)作圖,保留作圖痕跡,不必寫(xiě)作
法和證明);
(2)連接DE,求證:△ADE≌△BDE。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)AB∥DF,∠D+∠B=180°,
(1)求證:DE∥BC;
(2)如果∠AMD=75°,求∠AGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題10分)如圖,已知拋物線(xiàn)與軸交于A,B兩點(diǎn),與軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(3,0)。
(1)求m的值及拋物線(xiàn)的頂點(diǎn)坐標(biāo);
(2)點(diǎn)P是拋物線(xiàn)對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),當(dāng)PA+PC的值最小時(shí),求點(diǎn)P的坐標(biāo)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com