【題目】如圖,已知正方形與,點(diǎn)E在上,且為的中點(diǎn),點(diǎn)在線段的反向廷長線上.請利用無刻度的直尺按下列要求畫圖(保留畫圖的痕跡).
(1)在圖1中,畫出的中點(diǎn);
(2)在圖2中,畫出的垂直平分線.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸、軸分別交于點(diǎn),,經(jīng)過,兩點(diǎn)的拋物線與軸的負(fù)半軸的另一交點(diǎn)為,且
(1)求該拋物線的解析式及拋物線頂點(diǎn)的坐標(biāo);
(2)點(diǎn)是射線上一點(diǎn),問是否存在以點(diǎn),,為頂點(diǎn)的三角形,與相似,若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,G為BC邊上一點(diǎn),BE⊥AG于E,DF⊥AG于F,連接DE.
(1)求證:△ABE≌△DAF;
(2)若AF=1,四邊形ABED的面積為6,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,點(diǎn)在邊上,,點(diǎn)為的中點(diǎn),點(diǎn)為邊上的動點(diǎn),則使四邊形周長最小的點(diǎn)的坐標(biāo)為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為落實(shí)教育局“教育信息化2.0行動計(jì)劃”,搭建數(shù)字化校園平臺,需要購買一批電子白板和平板電腦,若購買2臺電子白板和6臺平板電腦共需9萬元;購買3臺電子白板和4臺平板電腦共需11萬元.
(1)求電子白板和平板電腦的單價各是多少萬元?
(2)結(jié)合學(xué)校實(shí)際,該校準(zhǔn)備購買電子白板和平板電腦共100臺,其中電子白板至少購買6臺且不超過24臺,某商家給出了兩種優(yōu)惠方案,方案一:電子白板和平板電腦均打九折;方案二:買1臺電子白板,送1臺平板電腦.若購買電子白板a(臺)所需的費(fèi)用為W(萬元),請根據(jù)兩種優(yōu)惠方案分別寫出W關(guān)于a的函數(shù)關(guān)系式,并分析該校應(yīng)選用哪種優(yōu)惠方案購買更省錢.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,我們將拋物線通過平移后得到,且設(shè)平移后所得拋物線的頂點(diǎn)依次為,這些頂點(diǎn)均在格點(diǎn)上,我們將這些拋物線稱為“繽紛拋物線”(k為整數(shù)).
(1)的坐標(biāo)為____________,直接寫出平移后拋物線的解析式為____________(用k表示);
(2)若平移后的拋物線與拋物線交于點(diǎn)A,對稱軸與拋物線交于點(diǎn)B,若,求整數(shù)k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有三點(diǎn)(1,3),(3,2),(﹣2,﹣),其中兩點(diǎn)同時在反比例函數(shù)y=的圖象上,將兩點(diǎn)分別記為A,B,另一點(diǎn)記為C.
(1)求反比例函數(shù)的解析式;
(2)求直線AB對應(yīng)的一次函數(shù)的解析式;
(3)連接AC、BC,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“母親節(jié)”期間,某校部分團(tuán)員參加社會公益活動,準(zhǔn)備購進(jìn)一批許愿瓶進(jìn)行
銷售,并將所得利潤捐給慈善機(jī)構(gòu).根據(jù)市場調(diào)查,這種許愿瓶一段時間內(nèi)的銷售量y(個)于銷售單價x(元
/個)之間的對應(yīng)關(guān)系如圖所示.
(1)試判斷y與x之間的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)若許愿瓶的進(jìn)價為6元/個,按照上述市場調(diào)查銷售規(guī)律,求利潤w(元)與銷售單價x(元/個)之間的
函數(shù)關(guān)系式;
(3)若許愿瓶的進(jìn)貨成本不超過900元,要想獲得最大利潤,試求此時這種許愿瓶的銷售單價,并求出
最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣經(jīng)過點(diǎn)A(1,0)和點(diǎn)B(5,0),與y軸交于點(diǎn)C.
(1)求此拋物線的解析式;
(2)以點(diǎn)A為圓心,作與直線BC相切的⊙A,求⊙A的半徑;
(3)在直線BC上方的拋物線上任取一點(diǎn)P,連接PB,PC,請問:△PBC的面積是否存在最大值?若存在,求出這個最大值的此時點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com