如圖拋物線y=ax2+bx+c,若OB=OC=OA,則b=( )

A.-2
B.-1
C.-
D.
【答案】分析:首先設(shè)點B的坐標(biāo)為:(m,0),由OB=OC=OA,即可得點A與點C的坐標(biāo),然后利用待定系數(shù)法即可求得b的值.
解答:解:設(shè)點B的坐標(biāo)為:(m,0),
∵OB=OC=OA,
∴A(-2m,0),C(0,m),
拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于C點,
,
解得:b=-
故選C.
點評:此題考查了待定系數(shù)法與方程組的解法.此題難度適中,解題的關(guān)鍵是掌握點與函數(shù)的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖拋物線y=ax2+bx+c的對稱軸是x=2,若x1<0<x2<2,則y1
y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖拋物線y=ax2-5ax+4a與x軸相交于點A、B,且過點C(5,4).
(1)求a的值和該拋物線頂點P的坐標(biāo).
(2)請你設(shè)計一種平移的方法,使平移后拋物線的頂點落在第二象限,并寫出平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖拋物線y=ax2+ax+c(a≠0)與x軸的交點為A、B(A在B的左邊)且AB=3,與y軸交于C,若拋物線過點E(-1,2).
(1)求拋物線的解析式;
(2)在x軸的下方是否存在一點P使得△PBC的面積為3?若存在求出P點的坐標(biāo),不存在說明理由;
(3)若D為原點關(guān)于A點的對稱點,F(xiàn)點坐標(biāo)為(0,1.5),將△CEF繞點C旋轉(zhuǎn),在旋轉(zhuǎn)過程中,線段DE與BF是否存在某種關(guān)系(數(shù)量、位置)?請指出并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖拋物線y=ax2-5x+4a與x軸相交于點A、B,且過點C(5,4).
(1)求a的值和該拋物線頂點P的坐標(biāo).
(2)該拋物線與y軸的交點為D,則四邊形ABCD為
等腰梯形
等腰梯形

(3)將此拋物線沿x軸向左平移3個單位,再向上平移2個單位,請寫出平移后圖象所對應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1996•山東)如圖拋物線y=ax2+bx+c,若OB=OC=
1
2
OA,則b=( 。

查看答案和解析>>

同步練習(xí)冊答案