【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)是軸正半軸上一點(diǎn),以為邊作等腰直角三角形,使,點(diǎn)在第一象限。若點(diǎn)在函數(shù)的圖象上,則的面積為( )
A. .B. .C. .D. .
【答案】C
【解析】
設(shè)點(diǎn)B的橫坐標(biāo)為x,過(guò)C作x軸,y軸的垂線(xiàn),易證△OAB≌△DCA,可得CD=OA=1,AD=OB=x,因?yàn)辄c(diǎn)C在y=圖象上,可得矩形ODCE的面積為3,列方程即可得出x的值,然后根據(jù)勾股定理求出AB的長(zhǎng),即可得出△ABC的面積.
解:設(shè)點(diǎn)B的橫坐標(biāo)為x,過(guò)C作CE⊥x軸于點(diǎn)E,CD⊥y軸于點(diǎn)D,
∵∠DCA+∠DAC=90°,∠DAC+∠OAB=90°,
∴∠DCA=∠OAB,
在△OAB與△DCA中,
,
∴△OAB≌△DCA(AAS),
∴CD=OA=1,AD=OB=x,
∴OD=1+x,
∵點(diǎn)C在y=圖象上,
∴矩形ODCE的面積為3,
即1×(1+x)=3,
x=2,
∴AC=AB==,
∴S△ABC=×AB×AC=.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC與 △ADE中,∠ACB=∠AED=90°,連接BD、CE,∠EAC=∠DAB.
(1)求證:△ABC ∽△ADE;
(2)求證:△BAD ∽△CAE;
(3)已知BC=4,AC=3,AE=.將△AED繞點(diǎn)A旋轉(zhuǎn),當(dāng)點(diǎn)E落在線(xiàn)段CD上時(shí),求 BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AE⊥BC于E,點(diǎn)D在∠ABC的平分線(xiàn)上,AC與BD交于F,連CD,∠ACD+2∠ACB=180°,AB=2EC,BD=2,BE=3,則AF=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市植物園于2019年3月-5月舉辦花展,按照往年的規(guī)律推算,自4月下旬起游客量每天增加人,游客量預(yù)計(jì)將在5月1日達(dá)到高峰,并持續(xù)到5月4日,隨后游客量每天有所減少.已知4月24日為第一天起,每天的游客量(人)與時(shí)間(天)的函數(shù)圖像如圖所示,結(jié)合圖像提供的信息,解答下列問(wèn)題:
已知該植物園門(mén)票元/張,若每位游客在園內(nèi)每天平均消費(fèi)元,試求5月1日-5月4日,所有游客消費(fèi)總額為多少元?
當(dāng)時(shí),求關(guān)于的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線(xiàn)交⊙O于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC交AC的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)求證:DE是⊙O的切線(xiàn).
(2)求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題提出)
如圖①,在中,若,,求邊上的中線(xiàn)的取值范圍.
(1)(問(wèn)題解決)
解決此問(wèn)題可以用如下方法:延長(zhǎng)到點(diǎn)使,再連接(或?qū)?/span>繞著點(diǎn)逆時(shí)針旋轉(zhuǎn)得到),把、、集中在中,利用三角形三邊的關(guān)系即可判斷,由此得出中線(xiàn)的取值范圍.
(2)(應(yīng)用)
如圖②,在中,為的中點(diǎn),已知,,,求的長(zhǎng).
(3)(拓展)
如圖③,在中,,點(diǎn)是邊的中點(diǎn),點(diǎn)在邊上,過(guò)點(diǎn)作交邊于點(diǎn),連接。已知,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(探究)(1)觀察下列算式,并完成填空:
;
;
;
;
……
.(是正整數(shù))
(2)某市一廣場(chǎng)用正六邊形、正方形和正三角形地板磚鋪設(shè)圖案,圖案中央是一塊正六邊形地板磚,周?chē)钦叫魏驼切蔚牡匕宕u,從里向外第一層包括6塊正方形和6塊正三角形地板磚;第二層包括6塊正方形和18塊正三角形地板磚;以此遞推.
①第3層中分別含有______塊正方形和______塊正三角形地板磚;
②第層中含有______塊正三角形地板磚(用含的代數(shù)式表示).
(應(yīng)用)
該市打算在一個(gè)新建廣場(chǎng)中央,也采用這個(gè)樣式的圖案鋪設(shè)地面,現(xiàn)有1塊正六邊形、150塊正方形和420塊正三角形地板磚,問(wèn):鋪設(shè)這樣的圖案,最多能鋪多少層?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,,分別為,的中點(diǎn),連接,,交點(diǎn)為. 若正方形的邊長(zhǎng)為.
(1)求證:;
(2)將沿對(duì)折,得到(如圖),延長(zhǎng)交的延長(zhǎng)線(xiàn)于點(diǎn),求的長(zhǎng);
(3)將繞點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn),使邊正好落在上,得到(如圖),若和相交于點(diǎn),求四邊形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)是2,點(diǎn)E是CD邊的中點(diǎn),點(diǎn)F是邊BC上不與點(diǎn)B,C重合的一個(gè)動(dòng)點(diǎn),把∠C沿直線(xiàn)EF折疊,使點(diǎn)C落在點(diǎn)C′處.當(dāng)△ADC′為等腰三角形時(shí),FC的長(zhǎng)為_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com