【題目】我們規(guī)定:如果一個(gè)三角形有一邊上的中線等于這條邊的一半,那么稱這個(gè)三角形為智慧三角形

理解:

1)如圖1,已知AB是⊙O上兩點(diǎn),請(qǐng)?jiān)趫A上找出滿足條件的點(diǎn)C,使ABC智慧三角形(畫出點(diǎn)C的位置,保留作圖痕跡);

2)如圖3,在平面直角坐標(biāo)系xOy中,⊙O的半徑為1,點(diǎn)Q是直線y3上的一點(diǎn),若在⊙O上存在一點(diǎn)P,使得OPQ智慧三角形,當(dāng)其面積取得最小值時(shí),直接寫出此時(shí)PQ的長(zhǎng)和點(diǎn)Q的坐標(biāo)

【答案】1)見(jiàn)解析;(2,Q(0,3)

【解析】

1)連結(jié)BO并且延長(zhǎng)交圓于C1,連結(jié)AO并且延長(zhǎng)交圓于C2,即可求解;

2)根據(jù)智慧三角形的定義可得△OPQ為直角三角形,根據(jù)題意可得一條直角邊為1,當(dāng)斜邊最短時(shí),另一條直角邊最短,則面積取得最小值,由垂線段最短可得斜邊最短為3,從而得到點(diǎn)Q坐標(biāo),再根據(jù)勾股定理可求另一條直角邊即PQ長(zhǎng).

解:(1)如圖所示,過(guò)直徑做△ABC即可;

2)如圖所示:

智慧三角形的定義可得△OPQ為直角三角形,

根據(jù)題意可得一條直角邊OP1

PQ最小時(shí),△POQ的面積最小,

根據(jù)勾股定理可知,當(dāng)斜邊OQ最短時(shí),PQ最小,面積取得最小值,

由垂線段最短可得斜邊最短為3,即OQ=3,

Q0,3),

由勾股定理可得PQ,

∴當(dāng)面積取得最小值時(shí),點(diǎn)Q的坐標(biāo)為(0,3)PQ的長(zhǎng)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)是6,點(diǎn)E、F分別是邊ADAB的點(diǎn),APBE于點(diǎn)P.

(1)如圖①,當(dāng)AE=2AF=BF時(shí),若點(diǎn)T是射線PF上的一個(gè)動(dòng)點(diǎn)(點(diǎn)T不與點(diǎn)P重合),當(dāng)△ABT是直角三角形時(shí),求AT的長(zhǎng).

(2)如圖②,當(dāng)AE=AF時(shí),連結(jié)CP,判斷CPPF的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+ca≠0)的圖象與x軸的相交情況,關(guān)于下列結(jié)論:

①方程ax2+bx0的兩個(gè)根為x10,x2=﹣4;②b4a0;③9a+3b+c0;其中正確的結(jié)論有( 。

A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣2x+3x軸交于點(diǎn)C,與y軸交于點(diǎn)B,拋物線yax2+x+c經(jīng)過(guò)BC兩點(diǎn).

(1)求拋物線的解析式;

(2)如圖,點(diǎn)E是直線BC上方拋物線上的一動(dòng)點(diǎn),當(dāng)△BEC面積最大時(shí),請(qǐng)求出點(diǎn)E的坐標(biāo)和△BEC面積的最大值?

(3)(2)的結(jié)論下,過(guò)點(diǎn)Ey軸的平行線交直線BC于點(diǎn)M,連接AM,點(diǎn)Q是拋物線對(duì)稱軸上的動(dòng)點(diǎn),在拋物線上是否存在點(diǎn)P,使得以P、QA、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果把函數(shù)yx2x2)的圖象和函數(shù)y的圖象組成一個(gè)圖象,并稱作圖象E,那么直線y3與圖象E的交點(diǎn)有_____個(gè);若直線ymm為常數(shù))與圖象E有三個(gè)不同的交點(diǎn),則常數(shù)m的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y3x2+bx+c與直線y=﹣1只有一個(gè)公共點(diǎn)M,與平行于x軸的直線l交此拋物線A,B兩點(diǎn)若AB=4,則點(diǎn)M到直線l的距離為(

A.11B.12C.D.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y=mx2+2mx+m-1和直線y=mx+m-1,且m≠0

1)求拋物線的頂點(diǎn)坐標(biāo);

2)試說(shuō)明拋物線與直線有兩個(gè)交點(diǎn);

3)已知點(diǎn)Tt0),且-1≤t≤1,過(guò)點(diǎn)Tx軸的垂線,與拋物線交于點(diǎn)P,與直線交于點(diǎn)Q,當(dāng)0m≤3時(shí),求線段PQ長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+ca0)過(guò)點(diǎn)(3,0),且對(duì)稱軸為直線x1.下列說(shuō)法,其中正確的是( 。

abc0

b24ac0;

ab+c0;

bc2a

A.①②B.①③④C.②④D.①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC為等腰直角三角形,∠B90°,AB2,把△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到△AB1C1,連接CB1,則點(diǎn)B1到直線AC的距離為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案