【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)、,對連續(xù)作旋轉(zhuǎn)變換依次得到三角形(1)、(2)、(3)、(4)、…,則第個三角形的直角頂點(diǎn)的坐標(biāo)是______.
【答案】
【解析】
觀察圖形不難發(fā)現(xiàn),每3個三角形為一個循環(huán)組依次循環(huán),△OAB每三次旋轉(zhuǎn)后回到原來的狀態(tài),并且每三次向前移動了3+4+5=12個單位,用2018除以3,根據(jù)商和余數(shù)的情況確定出第個三角形的直角頂點(diǎn)到原點(diǎn)O的距離,然后寫出坐標(biāo)即可.
解:點(diǎn),,
,,
,
由射影定理結(jié)合圖形可得,第個三角形的直角頂點(diǎn)的坐標(biāo)是;
觀察圖形不難發(fā)現(xiàn),每3個三角形為一個循環(huán)組依次循環(huán),△OAB每三次旋轉(zhuǎn)后回到原來的狀態(tài),并且每三次向前移動了3+4+5=12個單位,
余2,
第個三角形是第673組的第二個直角三角形,
第(2018)個三角形和第(2)個三角形的狀態(tài)一樣,
第個三角形的直角頂點(diǎn)的橫坐標(biāo)是12×672+4=8068,縱坐標(biāo)是.
故答案為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于點(diǎn)D.點(diǎn)P從點(diǎn)D出發(fā),沿線段DC向點(diǎn)C運(yùn)動,點(diǎn)Q從點(diǎn)C出發(fā),沿線段CA向點(diǎn)A運(yùn)動,兩點(diǎn)同時出發(fā),速度都為每秒1個單位長度,當(dāng)點(diǎn)P運(yùn)動到C時,兩點(diǎn)都停止.設(shè)運(yùn)動時間為t秒.
(1)求線段CD的長;
(2)設(shè)△CPQ的面積為S,求S與t之間的函數(shù)關(guān)系式,并確定在運(yùn)動過程中是否存在某一時刻t,使得S△CPQ∶S△ABC=9∶100?若存在,求出t的值;若不存在,說明理由;
(3)當(dāng)t為何值時,△CPQ為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=,E是AD邊上的一點(diǎn)(點(diǎn)E與點(diǎn)A和點(diǎn)D不重合),BE的垂直平分線交AB于點(diǎn)M,交DC于點(diǎn)N.
(1)證明:MN = BE.
(2)設(shè)AE=,四邊形ADNM的面積為S,寫出S關(guān)于的函數(shù)關(guān)系式.
(3)當(dāng)AE為何值時,四邊形ADNM的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一艘輪船在近海處由西向東航行,點(diǎn)C處有一燈塔,燈塔附近30海里的圓形區(qū)域內(nèi)有暗礁,輪船在A處測得燈塔在北偏東60°方向上,輪船又由A向東航行40海里到B處,測得燈塔在北偏東30°方向上.
(1)求輪船在B處時到燈塔C處的距離是多少?
(2)若輪船繼續(xù)向東航行,有無觸礁危險?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,∠DBC=90°,∠C=45°,AC=2,△ABC繞點(diǎn)B逆時針旋轉(zhuǎn)60°得到△DBE,連接AE.
(1)求證:△ABC≌△ABE;
(2)連接AD,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,點(diǎn)D是AB延長線上的一點(diǎn),AE⊥DC交DC的延長線于點(diǎn)E,AC平分∠DAE.
(1)DE與⊙O有何位置關(guān)系?請說明理由.
(2)若AB=6,CD=4,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△OAB的直角邊OA在x軸上,頂點(diǎn)B的坐標(biāo)為(6,8),直線CD交AB于點(diǎn)D(6,3),交x軸于點(diǎn)C(12,0).
(1)求直線CD的函數(shù)表達(dá)式;
(2)動點(diǎn)P在x軸上從點(diǎn)(﹣10,0)出發(fā),以每秒1個單位的速度向x軸正方向運(yùn)動,過點(diǎn)P作直線l垂直于x軸,設(shè)運(yùn)動時間為t.
①點(diǎn)P在運(yùn)動過程中,是否存在某個位置,使得∠PDA=∠B?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
②請?zhí)剿鳟?dāng)t為何值時,在直線l上存在點(diǎn)M,在直線CD上存在點(diǎn)Q,使得以OB為一邊,O,B,M,Q為頂點(diǎn)的四邊形為菱形,并求出此時t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,直線BC的解析式為y=﹣x+6.
(1)求拋物線的解析式;
(2)點(diǎn)M為線段BC上方拋物線上的任意一點(diǎn),連接MB,MC,點(diǎn)N為拋物線對稱軸上任意一點(diǎn),當(dāng)M到直線BC的距離最大時,求點(diǎn)M的坐標(biāo)及MN+NB的最小值;
(3)在(2)中,點(diǎn)M到直線BC的距離最大時,連接OM交BC于點(diǎn)E,將原拋物線沿射線OM平移,平移后的拋物線記為y′,當(dāng)y′經(jīng)過點(diǎn)M時,它的對稱軸與x軸的交點(diǎn)記為H.將△BOE繞點(diǎn)B逆時針旋轉(zhuǎn)60°至△BO1E1,再將△BO1E1沿著直線O1H平移,得到△B1O2E2,在平面內(nèi)是否存在點(diǎn)F,使以點(diǎn)C,H,B1,F(xiàn)為頂點(diǎn)的四邊形是以B1H為邊的菱形.若存在,直接寫出點(diǎn)B1的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com