【題目】 P為等邊△ABC的邊AB上一點(diǎn),Q為BC延長線上一點(diǎn),且PA=CQ,連PQ交AC邊于D.
(1)證明:PD=DQ.
(2)如圖2,過P作PE⊥AC于E,若AB=6,求DE的長.
【答案】(1)證明見解析;(2)DE=3.
【解析】
(1)過點(diǎn)P作PF∥BC交AC于點(diǎn)F;證出△APF也是等邊三角形,得出AP=PF=AF=CQ,由AAS證明△PDF≌△QDC,得出對(duì)應(yīng)邊相等即可;
(2)過P作PF∥BC交AC于F.同(1)由AAS證明△PFD≌△QCD,得出對(duì)應(yīng)邊相等FD=CD,證出AE+CD=DEAC,即可得出結(jié)果.
(1)如圖1所示,點(diǎn)P作PF∥BC交AC于點(diǎn)F.
∵△ABC是等邊三角形,
∴△APF也是等邊三角形,AP=PF=AF=CQ.
∵PF∥BC,∴∠PFD=∠DCQ.
在△PDF和△QDC中,,
∴△PDF≌△QDC(AAS),
∴PD=DQ;
(2)如圖2所示,過P作PF∥BC交AC于F.
∵PF∥BC,△ABC是等邊三角形,
∴∠PFD=∠QCD,△APF是等邊三角形,
∴AP=PF=AF.
∵PE⊥AC,∴AE=EF.
∵AP=PF,AP=CQ,∴PF=CQ.
在△PFD和△QCD中,,
∴△PFD≌△QCD(AAS),
∴FD=CD.
∵AE=EF,∴EF+FD=AE+CD,
∴AE+CD=DEAC.
∵AC=6,∴DE=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形紙片ABCD折疊,使邊DC落在對(duì)角線AC上,折痕為CE,且D點(diǎn)落在對(duì)角線D′處.若AB=3,AD=4,則ED的長為
A. B.3 C.1 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電視臺(tái)的娛樂節(jié)目《周末大放送》有這樣的翻獎(jiǎng)牌游戲:如圖所示,將一個(gè)正方形均分成9等份,數(shù)字的背面寫有祝福語或獎(jiǎng)金數(shù).游戲規(guī)則是:每次翻動(dòng)正面一個(gè)數(shù)字,看看反面對(duì)應(yīng)的內(nèi)容,就可知是得獎(jiǎng)還是得到溫馨祝福.
正面:
1 | 2 | 3 |
4 | 5 | 6 |
7 | 8 | 9 |
反面:
祝你開心 | 萬事如意 | 獎(jiǎng)金1 000元 |
身體健康 | 心想事成 | 獎(jiǎng)金500元 |
獎(jiǎng)金100元 | 生活愉快 | 謝謝參與 |
請(qǐng)你完成下列問題:
(1)翻到獎(jiǎng)金1 000元的概率是多少?
(2)翻不到獎(jiǎng)金的概率是多少?
(3)一選手準(zhǔn)備在奇數(shù)中選擇一個(gè)數(shù)字,他獲得獎(jiǎng)金的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等邊三角形,P為△ABC所在平面內(nèi)一個(gè)動(dòng)點(diǎn),BP=BA,若0°﹤∠PBC﹤ 180°,且∠PBC的平分線上一點(diǎn)D滿足DB=DA.
(1)當(dāng)BP和BA重合時(shí)(如圖1),則∠BPD=______°.
(2)當(dāng)BP在∠ABC內(nèi)部時(shí)(如圖2),求∠BPD的度數(shù)
(3)當(dāng)BP在∠ABC外部時(shí),請(qǐng)直接寫出∠BPD的度數(shù),并畫出相應(yīng)的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知五邊形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,則五邊形ABCDE的面積為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的中線,E,F分別是AD和AD延長線上的點(diǎn),且DE=DF,連接BF,CE.下列說法:①△BDF≌△CDE;②CE=BF; ③BF∥CE;④△ABD和△ACD周長相等.其中正確的有___________(只填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是射線CB上的一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE.
(1)如圖1,當(dāng)點(diǎn)D在線段CB上,且∠BAC=90°時(shí),那么∠DCE= 度;
(2)設(shè)∠BAC= ,∠DCE= .
① 如圖2,當(dāng)點(diǎn)D在線段CB上,∠BAC≠90°時(shí),請(qǐng)你探究與之間的數(shù)量關(guān)系,并證明你的結(jié)論;
② 如圖3,當(dāng)點(diǎn)D在線段CB的延長線上,∠BAC≠90°時(shí),請(qǐng)將圖3補(bǔ)充完整,并直接寫出此時(shí)與之間的數(shù)量關(guān)系(不需證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡,再求值
(1)(a+1)2 - a(a+3),其中a=2
(2) [(x﹣3y)2﹣(x+3y)(x﹣3y)]÷(﹣3y),其中x=﹣3,y=1.
(3)其中
(4)其中
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠DAB=∠CAE,AD=AB,AC=AE.
(1)求證△ABE≌△ADC;
(2)設(shè)BE與CD交于點(diǎn)O,∠DAB=30°,求∠BOC的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com