(2012•翔安區(qū)質(zhì)檢)在平面直角坐標(biāo)系中,將線段OA繞原點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,記點(diǎn)A(1,1)的對(duì)應(yīng)點(diǎn)為A1,則A1的坐標(biāo)為( 。
分析:作出圖形,過點(diǎn)A作AB⊥x軸于點(diǎn)B,作AC⊥y軸于點(diǎn)C,過點(diǎn)A1作A1B1⊥y軸于B1,作A1C1⊥y軸于C1,根據(jù)點(diǎn)A的坐標(biāo)可得OB=OC=1,然后根據(jù)旋轉(zhuǎn)變換只改變圖形的位置,不改變圖形的形狀與大小求出OB1,OC1,的大小,即可得解.
解答:解:如圖,過點(diǎn)A作AB⊥x軸于點(diǎn)B,作AC⊥y軸于點(diǎn)C,過點(diǎn)A1作A1B1⊥y軸于B1,作A1C1⊥y軸于C1,
∵A(1,1),
∴OB=OC=1,
根據(jù)旋轉(zhuǎn)變換的性質(zhì),OB1=OB=1,OC1=0C=1,
所以,點(diǎn)A1(-1,1).
故選B.
點(diǎn)評(píng):本題考查了坐標(biāo)與圖形的變化-旋轉(zhuǎn),熟記旋轉(zhuǎn)變換只改變圖形的位置,不改變圖形的形狀與大小是解題的關(guān)鍵,作出圖形更形象直觀.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•翔安區(qū)質(zhì)檢)如圖.⊙O的直徑AB垂直于弦CD,垂足為E,若∠COD=90°,則∠COE=
45°
45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•翔安區(qū)質(zhì)檢)(1)如圖1,∠AOB為已知角,請(qǐng)用直尺和圓規(guī)準(zhǔn)確作出∠AOB的平分線(不寫畫法,保留作圖痕跡);
(2)化簡(jiǎn):
a
a2+2a+1
•(a-
1
a
)

(3)如圖2.點(diǎn)A,F(xiàn),C,D在同一直線上,點(diǎn)B和點(diǎn)E分別直線AD的兩側(cè),且AB=DE,∠A=∠D,AF=DC.求證:BC=EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•翔安區(qū)質(zhì)檢)定義[p,q]為一次函數(shù)y=px+q的特征數(shù).
(1)若特征數(shù)為[2,k-2]的一次函數(shù)是正比例函數(shù),求k的值;
(2)若特征數(shù)為[2,0]的一次函數(shù)圖象與反比例函數(shù)y=
2x
圖象交于A、B兩點(diǎn),則當(dāng)x取何值時(shí),正比例函數(shù)的值大于反比例函數(shù)的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•翔安區(qū)質(zhì)檢)如圖.己知四邊形ABCD中,AB∥DC,AB=DC,且AB=6cm,BC=8cm,對(duì)角線AC=l0cm.
(1)求證:四邊形ABCD是矩形:
(2)若點(diǎn)E在對(duì)角線AC上,CE=4cm,動(dòng)點(diǎn)P從B點(diǎn)出發(fā),以每秒1cm的速度沿BC運(yùn)動(dòng)至點(diǎn)C止.設(shè)點(diǎn)P運(yùn)動(dòng)了x秒,請(qǐng)你探索:從運(yùn)動(dòng)開始,經(jīng)過多少時(shí)間,以點(diǎn)E、P、C為頂點(diǎn)的三角形是等腰三角形?請(qǐng)寫出所有可能的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•翔安區(qū)質(zhì)檢)如圖,已知以點(diǎn)A(2,-1)為頂點(diǎn)的拋物線經(jīng)過點(diǎn)B(4,0).
(1)求該拋物線的解析式;
(2)設(shè)點(diǎn)D為拋物線對(duì)稱軸與x軸的交點(diǎn),點(diǎn)E為拋物線上一動(dòng)點(diǎn),過E作直線y=-2的垂線,垂足為N.
①探索、猜想線段EN與ED之間的數(shù)量關(guān)系,并證明你的結(jié)論;
②拋物線上是否存在點(diǎn)E使△EDN為等邊三角形?若存在,請(qǐng)求出所有滿足條件的點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案