年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知點(diǎn)A是直線y=x與反比例函數(shù)y=(k>0,x>0)的交點(diǎn),B是y=圖象上的另一點(diǎn),BC∥x軸,交y軸于點(diǎn)C.動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運(yùn)動(dòng),終點(diǎn)為C,過(guò)點(diǎn)P作PM⊥x軸,PN⊥y軸,垂足分別為M,N.設(shè)四邊形OMPN的面積為S,P點(diǎn)運(yùn)動(dòng)時(shí)間為t,則S關(guān)于t的函數(shù)圖象大致為( 。
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知拋物線經(jīng)過(guò)A(﹣2,0),B(0,2),C(,0)三點(diǎn),一動(dòng)點(diǎn)P從原點(diǎn)出發(fā)以1個(gè)單位/秒的速度沿x軸正方向運(yùn)動(dòng),連接BP,過(guò)點(diǎn)A作直線BP的垂線交y軸于點(diǎn)Q.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)求拋物線的解析式;
(2)當(dāng)BQ=AP時(shí),求t的值;
(3)隨著點(diǎn)P的運(yùn)動(dòng),拋物線上是否存在一點(diǎn)M,使△MPQ為等邊三角形?若存在,請(qǐng)直接寫t的值及相應(yīng)點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖1,邊長(zhǎng)為4的正方形ABCD中,點(diǎn)E在AB邊上(不與點(diǎn)A,B重合),點(diǎn)F在BC邊上(不與點(diǎn)B,C重合).
第一次操作:將線段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E落在正方形上時(shí),記為點(diǎn)G;
第二次操作:將線段FG繞點(diǎn)G順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)F落在正方形上時(shí),記為點(diǎn)H;
依次操作下去…
(1)圖2中的△EFD是經(jīng)過(guò)兩次操作后得到的,其形狀為 ,求此時(shí)線段EF的長(zhǎng);
(2)若經(jīng)過(guò)三次操作可得到四邊形EFGH.
①請(qǐng)判斷四邊形EFGH的形狀為 ,此時(shí)AE與BF的數(shù)量關(guān)系是 ;
②以①中的結(jié)論為前提,設(shè)AE的長(zhǎng)為x,四邊形EFGH的面積為y,求y與x的函數(shù)關(guān)系式及面積y的取值范圍;
(3)若經(jīng)過(guò)多次操作可得到首尾順次相接的多邊形,其最大邊數(shù)是多少?它可能是正多邊形嗎?如果是,請(qǐng)直接寫出其邊長(zhǎng);如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,一個(gè)質(zhì)地均勻的正四面體的四個(gè)面上依次標(biāo)有數(shù)字﹣2,0,1,2,連續(xù)拋擲兩次,朝下一面的數(shù)字分別是a,b,將其作為M點(diǎn)的橫、縱坐標(biāo),則點(diǎn)M(a,b)落在以A(﹣2,0),B(2,0),C(0,2)為頂點(diǎn)的三角形內(nèi)(包含邊界)的概率是( 。
| A. |
| B. |
| C. |
| D. |
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在半徑為2的圓中,弦AC長(zhǎng)為1,M為AC中點(diǎn),過(guò)M點(diǎn)最長(zhǎng)的弦為BD,則四邊形ABCD的面積為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列計(jì)算正確的是( 。
| A. | a+a2=a3 | B. | (3a)2=6a2 | C. | a6÷a2=a3 | D. | a2•a3=a5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,為了知道空中一靜止的廣告氣球A的高度,小宇在B處測(cè)得氣球A的仰角為18°,他向前走了20m到達(dá)C處后,再次測(cè)得氣球A的仰角為45°,已知小宇的眼睛距地面1.6m,求此時(shí)氣球A距地面的高度(結(jié)果精確到0.1m).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com