(l01l•瑤海區(qū)一模)如圖,在△七B5中,七B=七5,以七B為直徑的⊙O交B5于點(diǎn)D,過點(diǎn)D作EF⊥七5于點(diǎn)E,交七B的延長線于點(diǎn)F.
(1)求證:EF是⊙O的切線;
(l)當(dāng)七B=5,B5=二時(shí),求DE的長.

(b)連接OD,…(b分)
∵AB=AC,
∴∠C=∠OBD,
∵OD=OB,
∴∠b=∠OBD,…(2分)
∴∠b=∠C,
∴ODAC,
∵EF⊥AC,
∴EF⊥OD,
∴EF是⊙O的切線;…(3分)

(2)連接AD,
∵AB為⊙O的直徑,
∴∠ADB=90°,…(4分)
又∵AB=AC,且BC=6,
∴CD=BD=
b
2
BC=3,
在Rt△ACD中,AC=AB=1,CD=3,
根據(jù)勾股定理人:AD=
AC2-CD2
=4

又手△ACD=
b
2
AC•ED=
b
2
AD•CD,
b
2
×1×ED=
b
2
×4×3,
ED=
b2
1
.…(1分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

菱形的對角線交點(diǎn)為O,以O(shè)為圓心,O到菱形一邊的距離為半徑的圓與另三邊的位置關(guān)系是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA為圓的切線,A為切點(diǎn),PBC為割線,∠APC的平分線交AB于點(diǎn)D,交AC于點(diǎn)E.
求證:(1)AD=AE;(2)AB•AE=AC•DB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,⊙O交x軸于A、B兩點(diǎn),直線FA⊥x軸于點(diǎn)A,點(diǎn)D在FA上,且DO平行于⊙O的弦MB,連DM并延長交x軸于點(diǎn)C.
(1)判斷直線DC與⊙O的位置關(guān)系,并給出證明;
(2)設(shè)點(diǎn)D的坐標(biāo)為(-2,4),①求MC的長;②若動點(diǎn)P從點(diǎn)A出發(fā)向點(diǎn)D勻速運(yùn)動,速度是每秒1個(gè)單位長;同時(shí)點(diǎn)Q從點(diǎn)D出發(fā)向點(diǎn)C勻速運(yùn)動,速度是每秒2個(gè)單位長;其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)運(yùn)動即結(jié)束.連接PQ交OD于點(diǎn)H,當(dāng)△PDH為直角三角形時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以BC為直徑的⊙O交△CFB的邊CF于點(diǎn)A,BM平分∠ABC交AC于點(diǎn)M,AD⊥BC于點(diǎn)D,AD交BM于點(diǎn)N,ME⊥BC于點(diǎn)E,AB2=AF•AC,cos∠ABD=
3
5
,AD=12.
(1)求證:△ANM≌△ENM;
(2)求證:FB是⊙O的切線;
(3)證明四邊形AMEN是菱形,并求該菱形的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在△ABC中,AB=2,AC=
2
,以A為圓心,1為半徑的圓與邊BC相切,則BC的長是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知正方形ABCD的邊長為2
3
,點(diǎn)M是AD的中點(diǎn),P是線段MD上的一動點(diǎn)(P不與M,D重合),以AB為直徑作⊙O,過點(diǎn)P作⊙O的切線交BC于點(diǎn)F,切點(diǎn)為E.
(1)除正方形ABCD的四邊和⊙O中的半徑外,圖中還有哪些相等的線段(不能添加字母和輔助線);
(2)求四邊形CDPF的周長;
(3)延長CD,F(xiàn)P相交于點(diǎn)G,如圖2所示.是否存在點(diǎn)P,使BF•FG=CF•OF?如果存在,試求此時(shí)AP的長;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示的方格紙中,有△ABC和半徑為2的⊙P,點(diǎn)A、B、C、P均在格點(diǎn)上(每個(gè)小方格的頂點(diǎn)叫格點(diǎn)).每個(gè)小方格都是邊長為1的正方形,將△ABC沿水平方向向左平移______單位時(shí),⊙P與直線AC相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,P為AB延長線上的一點(diǎn),PC是⊙O的切線,C為切點(diǎn),∠A=35°,求∠P的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案