(2006•臨沂)如圖,已知AB∥CD,則( )

A.∠1=∠2+∠3
B.∠1=2∠2+∠3
C.∠1=2∠2-∠3
D.∠1=180°-∠2-∠3
【答案】分析:根據(jù)兩直線平行,內(nèi)錯角相等以及三角形外角和定理即可解答.
解答:解:∵AB∥CD,
∴∠3=∠4.
又∵∠1=∠2+∠4,
∴∠1=∠2+∠3.
故選A.
點評:本題應(yīng)用的知識點為:兩直線平行,同位角相等,及三角形的外角等于與它不相鄰的兩個內(nèi)角的和.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2011年廣東省梅州市中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年安徽省巢湖市第七中學中考數(shù)學復(fù)習模擬試卷(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省江陵縣中考數(shù)學模擬訓練卷(一)(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省深圳市中考數(shù)學全真模擬試卷(二)(解析版) 題型:解答題

(2006•臨沂)如圖1,已知拋物線的頂點為A(0,1),矩形CDEF的頂點C、F在拋物線上,D、E在x軸上,CF交y軸于點B(0,2),且其面積為8.
(1)求此拋物線的解析式;
(2)如圖2,若P點為拋物線上不同于A的一點,連接PB并延長交拋物線于點Q,過點P、Q分別作x軸的垂線,垂足分別為S、R.
①求證:PB=PS;
②判斷△SBR的形狀;
③試探索在線段SR上是否存在點M,使得以點P、S、M為頂點的三角形和以點Q、R、M為頂點的三角形相似?若存在,請找出M點的位置;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案