在△ABC中,∠C=90°,AC=8,BC=6,以這個(gè)直角三角形的一條邊所在的直線為軸旋轉(zhuǎn)一周,求所得到的幾何體的表面積.
解:分三種情況: (1)當(dāng)以AC所在的直線為軸旋轉(zhuǎn)一周時(shí),得到的幾何體是一個(gè)圓錐(如圖1),它的母線長為AB,底面圓半徑為BC=6.由勾股定理,得 AB===10. ∴這時(shí)圓錐的表面積=π×6×10+π×62=60π+36π=96π. (2)當(dāng)以BC所在直線為軸旋轉(zhuǎn)一周時(shí),得到的幾何體也是一個(gè)圓錐(如圖2),它的母線長為AB=10,底面圓半徑為AC=8. ∴圓錐表面積=π×8×10+π×82=80π+64π=1.44π. (3)當(dāng)以AB所在直線為軸旋轉(zhuǎn)一周時(shí),得到的幾何體是底面是同圓,母線長分別是AC和BC的兩個(gè)圓錐(如圖3). 思路點(diǎn)撥:注意以三邊為軸分別旋轉(zhuǎn)得不同的圓錐體. 評(píng)注:由于本題中未指明是以Rt△ABC的哪一條邊為軸旋轉(zhuǎn),故應(yīng)分三種情況分別加以計(jì)算,對(duì)于第三種情況,應(yīng)注意它的表面積不包括底面圓的面積. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(廣西桂林卷)數(shù)學(xué)(帶解析) 題型:解答題
如圖,在△ABC中,∠BAC=90°,AB=AC=6,D為BC的中點(diǎn).
(1)若E、F分別是AB、AC上的點(diǎn),且AE=CF,求證:△AED≌△CFD;
(2)當(dāng)點(diǎn)F、E分別從C、A兩點(diǎn)同時(shí)出發(fā),以每秒1個(gè)單位長度的速度沿CA、AB運(yùn)動(dòng),到點(diǎn)A、B
時(shí)停止;設(shè)△DEF的面積為y,F(xiàn)點(diǎn)運(yùn)動(dòng)的時(shí)間為x,求y與x的函數(shù)關(guān)系式;
(3)在(2)的條件下,點(diǎn)F、E分別沿CA、AB的延長線繼續(xù)運(yùn)動(dòng),求此時(shí)y與x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆遼寧省大石橋市水源二中九年級(jí)上學(xué)期階段檢測數(shù)學(xué)試卷(帶解析) 題型:解答題
在△ABC中,AB=AC,∠BAC=α,點(diǎn)D是BC上一動(dòng)點(diǎn)(不與B、C重合),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α后到達(dá)AE位置,連接DE、CE,設(shè)∠BCE=β.
(1)如圖1,若α=90°,求β的大;
(2)如圖2,當(dāng)點(diǎn)D在線段BC上運(yùn)動(dòng)時(shí),試探究α與β之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)當(dāng)點(diǎn)D在線段BC的反向延長線上運(yùn)動(dòng)時(shí)(畫出圖形),(2)中的結(jié)論是否仍然成立?若成立,請(qǐng)證明,若不成立,請(qǐng)直接寫出α與β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:人教版初三年級(jí)數(shù)學(xué)相似形提高測試 題型:填空題
如圖,在△ABC中,AB=AC=27,D在AC上,且BD=BC=18,DE∥BC交AB于E,則DE=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆江蘇省鎮(zhèn)江市初一四月月考數(shù)學(xué)卷 題型:解答題
如圖,在ΔABC中,AB=AC=10,BC=8.用尺規(guī)作圖作BC邊上的中線AD(保留作圖痕跡,不要求寫作法、證明),并求AD的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com