【題目】如圖,矩形ABCD中,AB=2AD,以A為圓心,AB長為半徑作弧BE,CD于E,若AB=4,則陰影部分的面積為_____(結(jié)果保留π和根號).
【答案】8﹣2﹣π.
【解析】
先連接AE.根據(jù)矩形的性質(zhì)得到AD=BC=1,∠D=∠DAB=90°,CD∥AB,根據(jù)直角三角形的性質(zhì)及平行線的性質(zhì)得到∠EAB=∠DEA=30°,再用割補法根據(jù)三角形的面積公式進(jìn)行計算即可得到答案.
解:如圖,連接AE.
∵四邊形ABCD是矩形,
∴AD=BC=1,∠D=∠DAB=90°,CD∥AB,
在Rt△ADE中,∵AE=AB=4,AD=2,
∴AE=2AD,
∴∠AED=30°,DE=2,
∴∠EAB=∠DEA=30°,
∴S陰=S矩形ABCD﹣S△ADE﹣S扇形AEB
=8﹣×2×2﹣π42
=8﹣2﹣π
故答案為8﹣2﹣π.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】受地震的影響,某超市雞蛋供應(yīng)緊張,需每天從外地調(diào)運雞蛋1200斤.超市決定從甲、乙兩大型養(yǎng)殖場調(diào)運雞蛋,已知甲養(yǎng)殖場每天最多可調(diào)出800斤,乙養(yǎng)殖場每天最多可調(diào)出900斤,從兩養(yǎng)殖場調(diào)運雞蛋到超市的路程和運費如表:
到超市的路程(千米) | 運費(元/斤千米) | |
甲養(yǎng)殖場 | 200 | 0.012 |
乙養(yǎng)殖場 | 140 | 0.015 |
(1)若某天調(diào)運雞蛋的總運費為2670元,則從甲、乙兩養(yǎng)殖場各調(diào)運了多少斤雞蛋?
(2)設(shè)從甲養(yǎng)殖場調(diào)運雞蛋x斤,總運費為W元,試寫出W與x的函數(shù)關(guān)系式,怎樣安排調(diào)運方案才能使每天的總運費最?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的頂點為,與軸相交于點,對稱軸為直線,點是線段的中點.
(1)求拋物線的表達(dá)式;
(2)寫出點的坐標(biāo)并求直線的表達(dá)式;
(3)設(shè)動點,分別在拋物線和對稱軸l上,當(dāng)以,,,為頂點的四邊形是平行四邊形時,求,兩點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(探究)如圖,在等邊△ABC中,AB=4cm,點M為邊BC的中點,點N為邊AB上的任意一點(不與點A,B重合).若點B關(guān)于直線MN的對稱點B′恰好落在等邊△ABC的邊上,求BN的長.
(2)(拓展)如圖,在△ABC中,∠ABC=45°,AD是BC邊上的中線,過點D作DE⊥AB于點E,且sin∠DAB= ,DB=3.求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AC=3,BC=4,AB=5,點P在AB上(不與A、B重合),過P作PE⊥AC,PF⊥BC,垂足分別是E、F,連接EF,M為EF的中點.
(1)請判斷四邊形PECF的形狀,并說明理由;
(2)隨著P點在AB上位置的改變,CM的長度是否也會改變?若不變,求CM的長度;若有變化,求CM的變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶小面是一款發(fā)源于山城重慶的地方特色傳統(tǒng)小吃,是重慶最受歡迎的美食之一.重慶小面佐料豐富且用料考究,不同店面還根據(jù)自身菜譜加入豌豆、牛肉、肥腸、雜醬等,口感獨特,麻辣鮮香,近年來聞名全國,某天,小明家花了48元購買牛肉面作為早飯,小華家花了28元購買豌豆面作為早飯,且小明家購買牛肉面的碗數(shù)與小華家購買豌豆面的碗數(shù)相同.已知面館一碗豌豆面的價格比一碗牛肉面的價格少5元.
(1)求購買一碗豌豆面和一碗牛肉面各需要多少元?
(2)面館一碗豌豆面的成本為4元,一碗牛肉面的成本為7元,某天面館賣出豌豆面和牛肉面共400碗,且賣出的豌豆面和牛肉面的總利潤不低于1800元,則面館當(dāng)天至少賣出牛肉面多少碗?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD外取一點E,連接AE、BE、DE,過點A作AE的垂線交DE于點P.若AE=AP=1,PB=,下列結(jié)論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=.其中正確結(jié)論的序號是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩張等寬的紙條交叉重疊在一起,重疊的部分為四邊形ABCD,若測得A,C之間的距離為6cm,點B,D之間的距離為8cm,則線段AB的長為( 。
A.5 cmB.4.8 cmC.4.6 cmD.4 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知關(guān)于x的一元二次方程x2+(2k+3)x+k2=0有兩個不相等的實數(shù)根x1,x2.
(1)求k的取值范圍;
(2)若=﹣1,求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com