【題目】如圖,在ABC與ADE中,AB=AC,AD=AE,BAC=DAE,且點D在AB上,點E與點C在AB的兩側,連接BE,CD,點M、N分別是BE、CD的中點,連接MN,AM,AN.

下列結論:①△ACD≌△ABE;②△ABC∽△AMN;③△AMN是等邊三角形;若點D是AB的中點,則SABC=2SABE

其中正確的結論是 .(填寫所有正確結論的序號)

【答案】①②④

【解析】

試題分析:ACD和ABE中,AC=AB,BAC=DAE,AD=AE,∴△ACD≌△ABE(SAS),所以正確;

②∵△ACD≌△ABE,CD=BE,NCA=MBA,又M,N分別為BE,CD的中點,CN=BM,在ACN和ABM中,AC=AB,ACN=ABM,CN=BM,∴△ACN≌△ABM,AN=AM,CANBAM,∴∠BAC=MAN,AB=AC,∴∠ACB=ABC,∴∠ABCAMN,∴△ABC∽△AMN,所以正確;

③∵AN=AM,∴△AMN為等腰三角形,所以不正確;

④∵△ACN≌△ABM,SACN=SABM點M、N分別是BE、CD的中點,SACD=2SACN,SABE=2SABM,SACD=SABE,D是AB的中點,SABC=2SACD=2SABE,所以正確;

本題正確的結論有:①②④;故答案為:①②④

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】填空:(2a+b_______4a2+4ab+b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰Rt△ABC中,∠C=90°,D是斜邊上AB上任一點,AECDE , BFCDCD的延長線于F , CHABH點,交AEG

(1)試說明AH=BH
(2)求證:BDCG
(3)探索AE與EF、BF之間的數(shù)量關系

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:點A(4,0),點By軸正半軸上一點,如圖1,以AB為直角邊作等腰直角三角形ABC.

(1)當點B坐標為(0,1)時,求點C的坐標;
(2)如圖2,以OB為直角邊作等腰直角△OBD , 點D在第一象限,連接CDy軸于點E.在點B運動的過程中,BE的長是否發(fā)生變化?若不變,求出BE的長;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先填寫下表,通過觀察后再回答問題:

(1)表格中 = , =;
(2)從表格中探究 與數(shù)位的規(guī)律,并利用這個規(guī)律解決下面兩個問題:
①已知 ≈3.16,則 ;
②已知 =8.973,若 =897.3,用含 的代數(shù)式表示 ,則 = ;
(3)試比較 的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為方便市民出行,減輕城市中心交通壓力,佛山市掀起新一輪城市基礎設施建設高潮,動工修建貫穿東西、南北的地鐵2、3號線,已知修建地鐵2號線32千米和3號線66千米共投資581.6億元;且3號線每千米的平均造價比2號線每千米的平均造價多0.2億元.
(1)求2號線、3號線每千米的平均造價分別是多少億元?
(2)除地鐵1、2、3號線外,佛山市政府規(guī)劃未來五年,還要再建108千米的地鐵線網(wǎng).據(jù)預算,這168千米地鐵線網(wǎng)每千米的平均造價是3號線每千米的平均造價的1.2倍,則還需投資多少億元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若(x+3)(2x﹣5)=2x2+bx﹣15,則b的值為(
A.﹣2
B.2
C.1
D.﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=4,將矩形ABCD繞點C按順時針方向旋轉α角,得到矩形A'B'C'D',B'C與AD交于點E,AD的延長線與A'D'交于點F.

(1)如圖,當α=60°時,連接DD',求DD'和A'F的長;

(2)如圖,當矩形A'B'CD'的頂點A'落在CD的延長線上時,求EF的長;

(3)如圖,當AE=EF時,連接AC,CF,求ACCF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個同學在四次模擬試中,數(shù)學的平均成績都是112分,方差分別是S2=5,S2=12,則成績比較穩(wěn)定的是(
A.甲
B.乙
C.甲和乙一樣
D.無法確定

查看答案和解析>>

同步練習冊答案