如圖,已知DF∥AC,∠C=∠D,判斷CE與BD的位置關系.并說明理由.

CE∥BD.
證明:∵DF∥AC,
∴∠C=∠CEF,
∵∠C=∠D,
∴∠D=∠CEF,
∴CE∥BD.
分析:根據(jù)DF∥AC,求證∠C=∠CEF,利用等量代換求證∠D=∠CEF,然后即可證明結(jié)論.
點評:此題主要考查學生對平行線的判定和性質(zhì)這一知識點的理解和掌握,難度不大,屬于基礎題,要求學生熟練掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

27、如圖,已知DF∥AC,∠C=∠D,你能否判斷CE∥BD?試說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

19、如圖,已知DF∥AC,∠C=∠D,要證∠AMB=∠2,請完善證明過程,并在括號內(nèi)填上相應依據(jù).
(1)∵DF∥AC(已知),∴∠D=∠1(
兩直線平行,內(nèi)錯角相等
);
(2)∵∠C=∠D(已知),∴∠1=∠C(
等量代換
);
(3)∴DB∥EC(
同位角相等,兩直線平行
);
(4)∴∠AMB=∠2(
兩直線平行,同位角相等
).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、如圖,已知DF∥AC,∠C=∠D,則DB∥EC,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,已知DF∥AC,∠C=∠D,證明:CE∥BD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知DF∥AC,∠C=∠D,求證∠AMB=∠2,請完成下面的解答過程,并在括號內(nèi)填上相應的依據(jù).
解:∵DF∥AC(已知)
∴∠D=∠1( 。
∵∠C=∠D(  )
∠1
∠1
=∠C( 。
∴DB∥EC( 。
∴∠ABM=∠2(  )

查看答案和解析>>

同步練習冊答案