探究:
(1)AD是△ABC的中線,那么△ABD與△ACD的面積有什么關(guān)系,為什么?
(2)你能用三種不同的方法把一個(gè)三角形的面積四等分嗎?請(qǐng)畫出圖形.

(1)相等.
∵D為AB中點(diǎn),∴BD=DC.
又∵A為三角形ABC頂點(diǎn),
∴△ABD和△ACD同底等高.
∴△ABD與△ACD面積相等.
(回答△ACD與△ABD為何面積相等);

(2)分割方法如下圖提示(虛線為分割線):

精英家教網(wǎng)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、探究:
(1)AD是△ABC的中線,那么△ABD與△ACD的面積有什么關(guān)系,為什么?
(2)你能用三種不同的方法把一個(gè)三角形的面積四等分嗎?請(qǐng)畫出圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、(探究題)如圖,在△ABC中,∠B=2∠C,AD是∠BAC的平分線,那么AC與AB+BD相等嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,E是等腰Rt△ABC邊AC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)E與A、C不重合),以CE為一邊在Rt△ABC作等腰Rt△CDE,連接AD,BE.我們探究下列圖中線段AD、線段BE的長度關(guān)系及所在直線的位置關(guān)系:

(1)①猜想如圖1中線段AD、線段BE的長度關(guān)系及所在直線的位置關(guān)系;
②將圖1中的等腰Rt△CDE繞著點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)任意角度a,得到如圖2、如圖3情形.請(qǐng)你通過觀察、測量等方法判斷①中得到的結(jié)論是否仍然成立,并選取圖2證明你的判斷.

(2)將原題中等腰直角三角形改為直角三角形(如圖6),且AC=a,BC=b,CD=ka,CE=kb (a≠b,k>0),第(1)題①中得到的結(jié)論哪些成立,哪些不成立?若成立,以圖5為例簡要說明理由.
(3)在第(2)題圖5中,連接BD、AE,且a=4,b=3,k=
12
,求BD2+AE2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

探究:
(1)AD是△ABC的中線,那么△ABD與△ACD的面積有什么關(guān)系,為什么?
(2)你能用三種不同的方法把一個(gè)三角形的面積四等分嗎?請(qǐng)畫出圖形.

查看答案和解析>>

同步練習(xí)冊(cè)答案