【題目】神仙居景區(qū)門票價(jià)格80元/人,景區(qū)為吸引游客,對門票價(jià)格進(jìn)行動態(tài)管理,非節(jié)假日打a折,節(jié)假日期間,10人以下(包 括10人)不打折,10人以上超過10人的部分打b折,設(shè)游客為x人,門票費(fèi)用為y元,非節(jié)假日門票費(fèi)用y1(元)及節(jié)假日門票費(fèi)用y2(元)與游客x(人)之間的函數(shù)關(guān)系如圖所示.
(1)a= , b=;
(2)直接寫出y1、y2與x之間的函數(shù)關(guān)系式;
(3)導(dǎo)游小王6月10日(非節(jié)假日)帶A旅游團(tuán),6月20日(端午節(jié))帶B旅游團(tuán)到神仙居景區(qū)旅游,兩團(tuán)共計(jì)50人,兩次共付門票費(fèi)用3040元,求A、B兩個(gè)旅游團(tuán)各多少人?
【答案】
(1)6;8
(2)
解:設(shè)y1=k1x,
函數(shù)圖像經(jīng)過點(diǎn)(0,0)和(10,480),
10k1=480,
k1=48,
y1=48x;
0≤x≤10時(shí),設(shè)y2=k2x,
函數(shù)圖像經(jīng)過點(diǎn)(0,0)和(10,800),
10k2=800,
k2=80,
y2=80x,
x>10時(shí),設(shè)y2=kx+b,
函數(shù)圖像經(jīng)過點(diǎn)(10,800)和(20,1440),
,
,
y2=64x+160;
y2= ;
(3)
解:設(shè)A團(tuán)有n人,則B團(tuán)的人數(shù)為(50﹣n),
當(dāng)0<50-n≤10時(shí),即40≤n≤50,則48n+80(50﹣n)=3040,
解得n=30(不符合題意舍去),
當(dāng)10<50-n<50時(shí),即0<n<40,則48n+64(50﹣n)+160=3040,
解得n=20,
則50﹣n=50﹣20=30.
答:A團(tuán)有20人,B團(tuán)有30人.
【解析】解:(1)由y1 圖像上點(diǎn)(10,480),得到10人的費(fèi)用為480元,
a= ×10=6;
由y2 圖像上點(diǎn)(10,800)和(20,1440),得到20人中后10人費(fèi)用為640元,
∴b= ×10=8;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△COD是△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)40°后得到的圖形,若點(diǎn)C恰好落在AB上,且∠AOD的度數(shù)為90°,則∠B的度數(shù)是( )
A.40°
B.50°
C.60°
D.70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y= x+2 與x軸,y軸分別交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),將△OMN沿直線MN翻折后得到△PMN,則點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù).
幾何中,平行四邊形、矩形、菱形、正方形和等腰梯形都是特殊的四邊形,大家對于它們的性質(zhì)都非常熟悉,生活中還有一種特殊的四邊形﹣﹣箏形.所謂箏形,它的形狀與我們生活中風(fēng)箏的骨架相似. |
如果只研究一般的箏形(不包括菱形),請根據(jù)以上材料完成下列任務(wù):
如果只研究一般的箏形(不包括菱形),請根據(jù)以上材料完成下列任務(wù):
(1)請說出箏形和菱形的相同點(diǎn)和不同點(diǎn)各兩條;
(2)請仿照圖1的畫法,在圖2所示的8×8網(wǎng)格中重新設(shè)計(jì)一個(gè)由四個(gè)全等的箏形和四個(gè)全等的菱形組成的新圖案,具體要求如下:
①頂點(diǎn)都在格點(diǎn)上;
②所設(shè)計(jì)的圖案既是軸對稱圖形又是中心對稱圖形;
③將新圖案中的四個(gè)箏形都圖上陰影(建議用一系列平行斜線表示陰影).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,BC=3,AB=4,D是邊AB上一點(diǎn),DE∥BC交AC于點(diǎn)E,將△ADE沿DE翻折得到△A′DE,若△A′EC是直角三角形,則AD長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,點(diǎn)D在邊AC上,DE⊥B于點(diǎn)E,連CE.
(1)如圖1,已知AC=BC,AD=2CD,
①△ADE與△ABC面積之比;
②求tan∠ECB的值;
(2)如圖2,已知 = =k,求tan∠ECB的值(用含k的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C在一條直線上,△ABD,△BCE均為等邊三角形,連接AE和CD,AE分別交CD,BD于點(diǎn)M,P,CD交BE于點(diǎn)Q,連接PQ,BM,下面結(jié)論:
①△ABE≌△DBC;②∠DMA=60°;③△BPQ為等邊三角形;④MB平分∠AMC,
其中結(jié)論正確的有( )
A.1個(gè)
B.2個(gè)
C.31個(gè)
D.4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com