【題目】(1)已知,是平面上的任意一點(diǎn),過點(diǎn)作,,垂足分別為點(diǎn)、,求的度數(shù).
(2)探究與有什么關(guān)系?(直接寫出結(jié)論)
(3)通過上面這兩道題,你能說出如果一個角的兩邊分別垂直于另一個角的兩邊,則這兩個角是什么關(guān)系嗎?
【答案】(1)115°或65°;(2)或;(3)相等或互補(bǔ).
【解析】
(1)如圖(見解析),分點(diǎn)P在的內(nèi)部和點(diǎn)P在的外部兩種情況;分別根據(jù)垂直的性質(zhì)、四邊形的內(nèi)角和、三角形的內(nèi)角和定理即可得;
(2)由題(1)的結(jié)論和即可得出答案;
(3)由(2)的結(jié)論、角互補(bǔ)的定義即可得出答案.
(1)由題意,分以下兩種情況:
①如圖,點(diǎn)在的內(nèi)部
∵,
∴
在四邊形中,
∴
②如圖,點(diǎn)在的外部
∵,
∴
又
∴
綜上,的度數(shù)為或;
(2)由(1)知,當(dāng)時,則
當(dāng)時,
綜上,或;
(3)由(2)知,如果一個角的兩邊分別垂直于另一個角的兩邊,則這兩個角相等或互補(bǔ).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】順次連接對角線相等的四邊形各邊中點(diǎn),所得四邊形是( )
A. 矩形 B. 平行四邊形 C. 菱形 D. 任意四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2011年5月20日是第22個中國學(xué)生營養(yǎng)日,某校社會實(shí)踐小組在這天開展活動,調(diào)查快餐營養(yǎng)情況.他們從食品安全監(jiān)督部門獲取了一份快餐的信息(如圖).根據(jù)信息,解答下列問題.
(1)求這份快餐中所含脂肪質(zhì)量;
(2)若碳水化合物占快餐總質(zhì)量的40%,求這份快餐所含蛋白質(zhì)的質(zhì)量;
(3)若這份快餐中蛋白質(zhì)和碳水化合物所占百分比的和不高于85%,求其中所含碳水化合物質(zhì)量的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AG⊥BC于點(diǎn)G,AF⊥DE于點(diǎn)F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)如AF=3,AG=5,求△ADE與△ABC的周長之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)二次函數(shù)y1=mx2﹣6mx+8m(m為常數(shù)).
(1)若函數(shù)y1經(jīng)過點(diǎn)(1,3),求函數(shù)y1的表達(dá)式;
(2)若m<0,當(dāng)x<時,此二次函數(shù)y隨x的增大而增大,求a的取值范圍;
(3)已知一次函數(shù)y2=x﹣2,當(dāng)y1y2>0時,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AE⊥BC于E,將△ABE沿AE所在直線翻折得△AEF,若AB=2,∠B=45°,則△AEF與菱形ABCD重疊部分(陰影部分)的面積為( ).
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四邊形中,的角平分線及外角的平分線所在的直線相交于點(diǎn),若,.
(1)如圖(a)所示,,試用,表示,直接寫出結(jié)論.
(2)如圖(b)所示,,請在圖中畫出,并試用,表示.
(3)一定存在嗎?若有,寫出的值;若不一定,直接寫出,滿足什么條件時,不存在.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,分別以、為邊向外作正方形和正方形.
(1)當(dāng)時,正方形的周長________(用含的代數(shù)式表示);
(2)連接.試說明:三角形的面積等于正方形面積的一半.
(3)已知,且點(diǎn)是線段上的動點(diǎn),點(diǎn)是線段上的動點(diǎn),當(dāng)點(diǎn)和點(diǎn)在移動過程中,的周長是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,點(diǎn)D是邊AB的中點(diǎn),點(diǎn)E在邊BC上,AE=BE,點(diǎn)M是AE的中點(diǎn),聯(lián)結(jié)CM,點(diǎn)G在線段CM上,作∠GDN=∠AEB交邊BC于N.
(1)如圖2,當(dāng)點(diǎn)G和點(diǎn)M重合時,求證:四邊形DMEN是菱形;
(2)如圖1,當(dāng)點(diǎn)G和點(diǎn)M、C不重合時,求證:DG=DN.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com