【題目】設函數(shù)y= (k≠0,x>0)的圖象如圖所示,若z= ,則z關于x的函數(shù)圖象可能為(

A.
B.
C.
D.

【答案】D
【解析】解:∵y= (k≠0,x>0),
∴z= = = (k≠0,x>0).
∵反比例函數(shù)y= (k≠0,x>0)的圖象在第一象限,
∴k>0,
>0.
∴z關于x的函數(shù)圖象為第一象限內,且不包括原點的正比例的函數(shù)圖象.
故選D.
根據反比例函數(shù)解析式以及z= ,即可找出z關于x的函數(shù)解析式,再根據反比例函數(shù)圖象在第一象限可得出k>0,結合x的取值范圍即可得出結論.本題考查了反比例函數(shù)的圖象以及正比例函數(shù)的圖象,解題的關鍵是找出z關于x的函數(shù)解析式.本題屬于基礎題,難度不大,解決該題型題目時,根據分式的變換找出z關于x的函數(shù)關系式是關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)請畫出ABC關于y軸對稱的A′B′C′(其中A′,B′,C′分別是A,B,C的對應點,不寫畫法);

(2)直接寫出A′,B′,C′三點的坐標:A′(   ),B′(   ),C′(   

(3)計算ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=10,AD=6,點M為AB上的一動點,將矩形ABCD沿某一直線對折,使點C與點M重合,該直線與AB(或BC)、CD(或DA)分別交于點P、Q

(1)用直尺和圓規(guī)在圖甲中畫出折痕所在直線(不要求寫畫法,但要求保留作圖痕跡)
(2)如果PQ與AB、CD都相交,試判斷△MPQ的形狀并證明你的結論;
(3)設AM=x,d為點M到直線PQ的距離,y=d2 ,
①求y關于x的函數(shù)解析式,并指出x的取值范圍;
②當直線PQ恰好通過點D時,求點M到直線PQ的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(某進口專營店銷售一種“特產”,其成本價是20元/千克,根據以往的銷售情況描出銷量y(千克/天)與售價x(元/千克)的關系,如圖所示.

(1)試求出y與x之間的一個函數(shù)關系式;
(2)利用(1)的結論:
求每千克售價為多少元時,每天可以獲得最大的銷售利潤.
②進口產品檢驗、運輸?shù)冗^程需耗時5天,該“特產”最長的保存期為一個月(30天),若售價不低于30元/千克,則一次進貨最多只能多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,BECD,BE=DE,BC=DA.

求證:(1)BEC≌△DAE;

(2)DFBC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD和四邊形DEFG為正方形,點E在線段DE上,點A,D,G在同一直線上,且AD=3,DE=1,連接AC,CG,AE,并延長AE交CG于點H.

(1)求sin∠EAC的值.
(2)求線段AH的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解某校學生的課外閱讀情況,隨機抽查了10學生周閱讀用時數(shù),結果如下表:

周閱讀用時數(shù)(小時)

4

5

8

12

學生人數(shù)(人)

3

4

2

1

則關于這10名學生周閱讀所用時間,下列說法正確的是( 。
A.中位數(shù)是6.5
B.眾數(shù)是12
C.平均數(shù)是3.9
D.方差是6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為2,一個銳角等于60°的菱形紙片,小芳同學將一個三角形紙片的一個頂點與該菱形頂點D重合,按順時針方向旋轉三角形紙片,使它的兩邊分別交CB、BA(或它們的延長線)于點E、F,∠EDF=60°,當CE=AF時,如圖1小芳同學得出的結論是DE=DF.

(1)繼續(xù)旋轉三角形紙片,當CE≠AF時,如圖2小芳的結論是否成立?若成立,加以證明;若不成立,請說明理由
(2)再次旋轉三角形紙片,當點E、F分別在CB、BA的延長線上時,如圖3請直接寫出DE與DF的數(shù)量關系;
(3)連EF,若△DEF的面積為y,CE=x,求y與x的關系式,并指出當x為何值時,y有最小值,最小值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,SABCD=24,AE平分∠BAC,交BC于E,沿AE將△ABE折疊,點B的對應點為F,連接EF并延長交AD于G,EG將ABCD分為面積相等的兩部分.則SABE=

查看答案和解析>>

同步練習冊答案