已知某商品的進(jìn)價(jià)為每件40元,售價(jià)是每件60元,每星期可賣出300件.市場調(diào)查反映:如果調(diào)整價(jià)格,每漲價(jià)一元,每星期要少賣出10件.設(shè)該商品定價(jià)為每件x元.
(1)該商店每星期的銷售量是
900-10x
900-10x
件(用含x的代數(shù)式表示);
(2)設(shè)商場每星期獲得的利潤為y元,求y與x的函數(shù)關(guān)系式;
(3)該商品應(yīng)定價(jià)為多少元時(shí),商場能獲得最大利潤?
分析:(1)根據(jù)每漲價(jià)一元,每星期要少賣出10件,列代數(shù)式即可;
(2)商場利潤=每件商品的利潤×(300-10×相對于60提高的價(jià)格),即可得到y(tǒng)與x的函數(shù)關(guān)系式;
(3)由(2)判斷出二次函數(shù)的對稱軸,得到相應(yīng)的定價(jià)和最大利潤即可.
解答:解:(1)∵每漲價(jià)一元,每星期要少賣出10件.
∴該商店每星期的銷售量是300-10×(x-60)=900-10x,
故答案為:900-10x;

(2)設(shè)商品定價(jià)為x元,商場每星期的利潤為y元.
y=(x-40)[300-10×(x-60)]=(x-40)(-10x+900),

(3)由(2)可知:x=-
b
2a
=65元時(shí),
商場利潤最大為:25×250=6250元.
答:商品定價(jià)為65元時(shí),商場利潤最大為6250元.
點(diǎn)評:本題考查了二次函數(shù)的應(yīng)用;得到每星期賣出商品的件數(shù)是解決本題的難點(diǎn);得到每周獲得總利潤的關(guān)系式是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知某商品的進(jìn)價(jià)為每件40元,售價(jià)是每件60元,每星期可賣出300件.市場調(diào)查反映:如調(diào)整價(jià)格進(jìn)行漲價(jià)銷售,每漲價(jià)一元,每星期要少賣出10件.該商品應(yīng)定價(jià)為多少元時(shí),商場能獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知某商品的進(jìn)價(jià)為每件40元.現(xiàn)在的售價(jià)是每件60元,每星期可賣出300件.市場調(diào)查反映:如調(diào)整價(jià)格,每漲價(jià)一元,每星期要少賣出10件;每降價(jià)一元,每星期可多賣出20件.如何定價(jià)才能使利潤最大?利潤最大是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新疆自治區(qū)期中題 題型:解答題

已知某商品的進(jìn)價(jià)為每件40元,售價(jià)是每件60元,每星期可賣出300件.市場調(diào)查反映:如調(diào)整價(jià)格進(jìn)行漲價(jià)銷售,每漲價(jià)一元,每星期要少賣出10件.該商品應(yīng)定價(jià)為多少元時(shí),商場能獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南通市如皋初中九年級(上)第二次質(zhì)量監(jiān)測數(shù)學(xué)試卷(解析版) 題型:解答題

已知某商品的進(jìn)價(jià)為每件40元,售價(jià)是每件60元,每星期可賣出300件.市場調(diào)查反映:如調(diào)整價(jià)格進(jìn)行漲價(jià)銷售,每漲價(jià)一元,每星期要少賣出10件.該商品應(yīng)定價(jià)為多少元時(shí),商場能獲得最大利潤?

查看答案和解析>>

同步練習(xí)冊答案