【題目】某蛋糕房推出一種新品蛋糕,每個成本為50元經(jīng)過一段時間的售賣發(fā)現(xiàn),當單價定為90元的時候,可賣100個,而單價每降低1元,就會多賣出10

1)寫出銷售量 ()與銷售單價(元)之間的函數(shù)關系式;

2)若設銷售這種蛋糕的利潤為(元),請寫出與銷售單價 (元)之間的函數(shù)關系式,并計算當銷售單價定為多少元時該蛋糕房可獲得最大利潤(不需要計算最大利潤);

3)若想盡可能地降低成本,并使該蛋糕房獲利6000元,應將銷售單價定為多少元?

【答案】1;(2,當銷售單價定為75元時該蛋糕房可獲得最大利潤;(3)應將銷售單價定為80

【解析】

1)單價每降低1元,就會多賣出10個,售價為元時,售價降低元,則多賣,據(jù)此可得關系式;

2)利用每個蛋糕利潤乘以銷售量即可得出wx之間的關系式,再根據(jù)二次函數(shù)的性質得出最大利潤時的售價;

3w=6000時,解一元二次方程得出售價,再根據(jù)成本的函數(shù)關系式,確定成本最低時的售價.

解:(1

2)由題意,得

時, 取得最大值,

即當銷售單價定為75元時該蛋糕房可獲得最大利潤.

3)當時,有,

解得

當銷售量為時,設總成本為,則

,

的增大而減小,

時,有最小值.

應將銷售單價定為80元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了幫助貧困失學兒童,宿遷市團委發(fā)起“愛心儲蓄”活動,鼓勵學生將自己的壓歲錢和零花錢存入銀行,定期一年,到期后取回本金,而把利息捐贈給貧困失學兒童.某中學共有學生1200人,圖1是該校各年級學生人數(shù)比例分布的扇形統(tǒng)計圖,圖2是該校學生人均存款情況的條形統(tǒng)計圖.

1)求該學校的人均存款數(shù);

2)已知銀行一年定期存款的年利率是2.25%(“愛心儲蓄”免收利息稅),且每351元能提供給1位失學兒童一年的基本費用,那么該學校一學年能夠幫助多少位失學兒童?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DAB的中點,ECD的中點, 過點CCF//ABAE的延長線于點F,連接BF

(1) 求證:DBCF;

(2) 如果ACBC,試判斷四邊形BDCF的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,真線軸,軸分別交于兩點,為等腰直角三角形,且.若點恰好落在函數(shù))在第二象限內的圖象上,則的值為(

A.-1B.-2C.-3D.-4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究:如圖,在平面直角坐標系中,二次函數(shù)的圖象與軸交于兩點,點在點的左側,與軸交于點,點是直線下方拋物線上的一個動點.

1)求直線的解析式;

2)連接,并將沿軸對折,得到四邊形.是否存在點,使四邊形為菱形?若存在,求出此時點的坐標;若不存在,請說明理由;

3)當點運動到什么位置時,四邊形的面積最大?求出此時點的坐標和四邊形的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,陽光下,小亮的身高如圖中線段AB所示,他在地面上的影子如圖中線段BC所示,線段DE表示旗桿的高,線段FG表示一堵高墻.

1)請你在圖中畫出旗桿在同一時刻陽光照射下形成的影子,并用線段表示;

2)如果小亮的身高AB=1.6m,他的影子BC=2.4m,旗桿的高DE=15m,旗桿與高墻的距離EG=16m,請求出旗桿的影子落在墻上的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形ABCD的邊AB:BC=3:2,點A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過點D,且與邊BC交于點E,則點E的坐標為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,拋物線經(jīng)過點兩點,且與y軸交于點C

1)求拋物線的表達式;

2)如圖①,在拋物線的對稱軸上尋找一點M,使得ACM的周長最小,求點M的坐標.

3)如圖②,用寬為4個單位長度的直尺垂直于x軸,并沿x軸左右平移,直尺的左右兩邊所在的直線與拋物線相交于P,Q兩點(點P在點Q的左側),連接PQ,在線段PQ上方拋物線上有一動點D,連接DP,DQ.若點P的橫坐標為,求DPQ面積的最大值,并求此時點D的坐標;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為進一步促進“美麗校園”創(chuàng)建工作,某校團委計劃對八年級五個班的文化建設進行檢查,每天隨機抽查一個班級,第一天從五個班級隨機抽取一個進行檢查,第二天從剩余的四個班級再隨機抽取一個進行檢查,第三天從剩余的三個班級再隨機抽取一個進行檢查…,以此類推,直到檢查完五個班級為止,且每個班級被選中的機會均等

(1)第一天,八(1)班沒有被選中的概率是   ;

(2)利用網(wǎng)狀圖或列表的方法,求前兩天八(1)班被選中的概率

查看答案和解析>>

同步練習冊答案