【題目】如圖,已知在平行四邊形ABCD中,點(diǎn)E是CD上一點(diǎn),且DE=2,CE=3,射線AE與射線BC相交于點(diǎn)F;
(1)求 的值;
(2)如果 = , = ,求向量 ;(用向量 、 表示)
【答案】
(1)解:∵四邊形ABCD是平行四邊形,DE=2,CE=3,
∴AB=DC=DE+CE=5,且AB∥EC,
∴△FEC∽△FAB,
∴ = = ;
(2)解:∵△FEC∽△FAB,
∴ = ,
∴FC= BC,EC= AB,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,EC∥AB,
∴ = = ,
∴ = = , = = ,
則 = + = .
【解析】(1)根據(jù)平行四邊形的性質(zhì)得出AB=5、AB∥EC,證△FEC∽△FAB得 = = ;(2)由△FEC∽△FAB得 = ,從而知FC= BC,EC= AB,再由平行四邊形性質(zhì)及向量可得 = = , = = ,最后根據(jù)向量的運(yùn)算得出答案.
【考點(diǎn)精析】掌握平行四邊形的性質(zhì)和相似三角形的判定與性質(zhì)是解答本題的根本,需要知道平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=8,E是邊AB上一點(diǎn),且AE= AB.⊙O經(jīng)過點(diǎn)E,與邊CD所在直線相切于點(diǎn)G(∠GEB為銳角),與邊AB所在直線交于另一點(diǎn)F,且EG:EF= :2.當(dāng)邊AD或BC所在的直線與⊙O相切時,AB的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從A地到B地的公路需經(jīng)過C地,圖中AC=10千米,∠CAB=25°,∠CBA=37°,因城市規(guī)劃的需要,將在A、B兩地之間修建一條筆直的公路.
(1)求改直的公路AB的長;
(2)問公路改直后比原來縮短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,點(diǎn)D在邊BC上,∠DAB=∠B,點(diǎn)E在邊AC上,滿足AECD=ADCE.
(1)求證:DE∥AB;
(2)如果點(diǎn)F是DE延長線上一點(diǎn),且BD是DF和AB的比例中項,聯(lián)結(jié)AF.求證:DF=AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的四個頂點(diǎn)正好落在四條平行線上,并且從上到下每兩條平行線間的距離都是1,如果AB:BC=3:4,那么AB的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,點(diǎn)E是射線CB上的動點(diǎn),點(diǎn)F是射線CD上一點(diǎn),且AF⊥AE,射線EF與對角線BD交于點(diǎn)G,與射線AD交于點(diǎn)M;
(1)當(dāng)點(diǎn)E在線段BC上時,求證:△AEF∽△ABD;
(2)在(1)的條件下,聯(lián)結(jié)AG,設(shè)BE=x,tan∠MAG=y,求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍;
(3)當(dāng)△AGM與△ADF相似時,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AB=5,tanA= ,將△ABC沿直線l翻折,恰好使點(diǎn)A與點(diǎn)B重合,直線l分別交邊AB、AC于點(diǎn)D、E;
(1)求△ABC的面積;
(2)求sin∠CBE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,BC=AC,以BC為直徑的 O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.
(1)求證:點(diǎn)D是AB的中點(diǎn);
(2)判斷DE與 O的位置關(guān)系,并證明你的結(jié)論;
(3)若 O的直徑為3,cosB= ,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com