【題目】(8)已知AB為⊙O的直徑,OCAB,DCOB交于點F,在直線AB上有一點E,連接ED,且有EDEF.

(1)如圖①求證:ED為⊙O的切線;

(2)如圖②直線ED與切線AG相交于G,OF2O的半徑為6,AG的長.

【答案】1)見解析;(212

【解析】試題分析:(1)連接OD,由ED=EF可得出EDF=∠EFD,由對頂角相等可得出EDF=∠CFO;由OD=OC可得出ODF=∠OCF,結(jié)合OCAB即可得知EDF+∠ODF=90°,即EDO=90°,由此證出EDO的切線;

2)連接OD,過點DDMBA于點M,結(jié)合(1)的結(jié)論根據(jù)勾股定理可求出ED、EO的長度,結(jié)合DOE的正弦、余弦值可得出DM、MO的長度,根據(jù)切線的性質(zhì)可知GAEA,從而得出DMGA,根據(jù)相似三角形的判定定理即可得出EDM∽△EGA,根據(jù)相似三角形的性質(zhì)即可得出GA的長度

試題解析:解:1)連接OD,ED=EF,∴∠EDF=∠EFD,∵∠EFD=∠CFO∴∠EDF=∠CFOOD=OC,∴∠ODF=∠OCFOCAB,∴∠CFO+∠OCF=∠EDF+∠ODF=∠EDO=90°,EDO的切線;

2)連接OD,過點DDMBA于點M,由(1)可知EDO為直角三角形,設(shè)ED=EF=a,EO=EF+FO=a+2,由勾股定理得,EO2=ED2+DO2,即(a+22=a2+62,解得,a=8,即ED=8,EO=10sinEOD=cosEOD=,DM=ODsinEOD=6×=,MO=ODcosEOD=6×=,EM=EOMO=10=EA=EO+OA=10+6=16

GAO于點A,GAEA,DMGA,∴△EDM∽△EGA, ,即 ,解得GA=12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列短文:

如圖,G是四邊形ABCD對角線AC上一點,過GGECDADE,GFCBABF,若EG=FG,則有BC=CD成立,同時可知四邊形ABCD與四邊形AFGE相似.

解答問題:

(1)有一塊三角形空地(如圖△ABC),BC鄰近公路,現(xiàn)需在此空地上修建一個正方形廣場,其余地為草坪,要使廣場一邊靠公路,且其面積最大,如何設(shè)計,請你在下面圖中畫出此廣場正方形.(尺規(guī)作圖,不寫作法)

(2)銳角△ABC是一塊三角形余料,邊AB=130mm,BC=150mm,AC=140mm,要把它加工成正方形零件,使正方形的一邊在三角形的一邊上,其余兩個頂點分別在另外兩條邊上,且剪去正方形零件后剩下的邊角料較少,這個正方形零件的邊長是多少?你能得出什么結(jié)論,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】抗洪指揮部的一位駕駛員接到一個防洪的緊急任務(wù),要在限定的時內(nèi)把一批抗洪物質(zhì)從物質(zhì)局運到水庫,這輛車如果按每小時30千米的速度行駛在限定的時間內(nèi)趕到水庫,還差3千米,他決定以每小時40千米的速度前進,結(jié)果比限定時間早到18分鐘,問限定時間是幾小時?物質(zhì)局倉庫離水庫有多遠?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖的七邊形ABCDEFG中,AB、ED的延長線相交于O點.若圖中∠1、2、3、4的外角的角度和為220°,則∠BOD的度數(shù)是( 。

A. 400 B. 450 C. 500 D. 600

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當(dāng)四邊形BEDF是菱形時,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2bx2的圖象與x軸交于A,B兩點,y軸交于點C,A的坐標(biāo)為(4,0)且當(dāng)x=-2x5時二次函數(shù)的函數(shù)值y相等.

(1)求實數(shù)a,b的值;

(2)如圖①,動點E,F同時從A點出發(fā),其中點E以每秒2個單位長度的速度沿AB邊向終點B運動,F以每秒個單位長度的速度沿射線AC方向運動.當(dāng)點E停止運動時F隨之停止運動.設(shè)運動時間為t秒.連接EF,將△AEF沿EF翻折,使點A落在點D,得到△DEF.

①是否存在某一時刻t,使得△DCF為直角三角形?若存在,求出t的值;若不存在,請說明理由;

②設(shè)△DEF與△ABC重疊部分的面積為S,S關(guān)于t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小莉的爸爸買了某演唱會的一張門票,她和哥哥兩人都想去觀看,可門票只有一張,讀九年級的哥哥想了一個辦法,拿了八張撲克牌,將數(shù)字 1,2,3,5 的四張牌給小莉,將數(shù)字為 4,6,7,8 的四張牌留給自己,并按如下游戲規(guī)則進行:小莉和哥哥從各自的四張牌中隨機抽出一張,然后 將抽出的兩張牌數(shù)字相加,如果和為偶數(shù),則小莉去,如果和為奇數(shù),則哥哥去。

(1)請用樹狀圖或列表的方法表示出兩張牌數(shù)字相加和的所有可能出現(xiàn)的結(jié)果;

(2)哥哥設(shè)計的游戲規(guī)則公平么?請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在平面直角坐標(biāo)系xOy中,函數(shù)y1(x0)的圖象與一次函數(shù)y2kxk的圖象的交點為A(m2)

(1)求一次函數(shù)的解析式;

(2)設(shè)一次函數(shù)ykxk的圖象與y軸交于點B,若點Px軸上一點,且滿足PAB的面積是6,請寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某實驗學(xué)校校友會在今年開學(xué)初,到新華書店采購文學(xué)名著和自然科學(xué)兩類圖書.經(jīng)了解,購買30本文學(xué)名著和50本自然科學(xué)書共需2350元,20本文學(xué)名著比20本自然科學(xué)書貴500元.

1)求每本文學(xué)名著和自然科學(xué)書的單價.

2)若該校校友會要求購買自然科學(xué)書比文學(xué)名著多30本,總費用不超過2400元,請求出至多購買文學(xué)名著多少本?

查看答案和解析>>

同步練習(xí)冊答案