【題目】為了貫徹落實(shí)市委政府提出的“精準(zhǔn)扶貧”精神,某校特制定了一系列幫扶A、B兩貧困村的計(jì)劃,現(xiàn)決定從某地運(yùn)送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運(yùn)完這批魚苗,已知這兩種大小貨車的載貨能力分別為12箱/輛和8箱/輛,其運(yùn)往A、B兩村的運(yùn)費(fèi)如表:
目的地 | A村(元/輛) | B村(元/輛) |
大貨車 | 800 | 900 |
小貨車 | 400 | 600 |
(1)求這15輛車中大小貨車各多少輛?
(2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設(shè)前往A村的大貨車為x輛,前往A、B兩村總費(fèi)用為y元,試求出y與x的函數(shù)解析式.
(3)在(2)的條件下,若運(yùn)往A村的魚苗不少于100箱,請(qǐng)你寫出使總費(fèi)用最少的貨車調(diào)配方案,并求出最少費(fèi)用.
【答案】
(1)解:設(shè)大貨車用x輛,小貨車用y輛,根據(jù)題意得:
,
解得: .
∴大貨車用8輛,小貨車用7輛
(2)解:y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(3≤x≤8,且x為整數(shù))
(3)解:由題意得:12x+8(10﹣x)≥100,
解得:x≥5,
又∵3≤x≤8,
∴5≤x≤8且為整數(shù),
∵y=100x+9400,
k=100>0,y隨x的增大而增大,
∴當(dāng)x=5時(shí),y最小,
最小值為y=100×5+9400=9900(元).
答:使總運(yùn)費(fèi)最少的調(diào)配方案是:5輛大貨車、5輛小貨車前往A村;3輛大貨車、2輛小貨車前往B村.最少運(yùn)費(fèi)為9900元
【解析】(1)設(shè)大貨車用x輛,小貨車用y輛,根據(jù)大、小兩種貨車共15輛,運(yùn)輸152箱魚苗,列方程組求解;(2)設(shè)前往A村的大貨車為x輛,則前往B村的大貨車為(8﹣x)輛,前往A村的小貨車為(10﹣x)輛,前往B村的小貨車為[7﹣(10﹣x)]輛,根據(jù)表格所給運(yùn)費(fèi),求出y與x的函數(shù)關(guān)系式;(3)結(jié)合已知條件,求x的取值范圍,由(2)的函數(shù)關(guān)系式求使總運(yùn)費(fèi)最少的貨車調(diào)配方案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列6個(gè)代數(shù)式:ab、ac、a+b+c、2a+b、2a﹣b中,其值為正的式子的個(gè)數(shù)是( )
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,雙曲線y= (x>0)與直線EF交于點(diǎn)A,點(diǎn)B,且AE=AB=BF,連結(jié)AO,BO,它們分別與雙曲線y= (x>0)交于點(diǎn)C,點(diǎn)D,則:
(1)①AB與CD的位置關(guān)系是;
②四邊形ABDC的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=3ax2+2bx+c
(1)若a=b=1,c=﹣1求該拋物線與x軸的交點(diǎn)坐標(biāo);
(2)若a= ,c=2+b且拋物線在﹣2≤x≤2區(qū)間上的最小值是﹣3,求b的值;
(3)若a+b+c=1,是否存在實(shí)數(shù)x,使得相應(yīng)的y的值為1,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于點(diǎn)G,點(diǎn)E、F分別為AG、CD的中點(diǎn),連接DE、FG.
(1)求證:四邊形DEGF是平行四邊形;
(2)當(dāng)點(diǎn)G是BC的中點(diǎn)時(shí),求證:四邊形DEGF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC的邊長(zhǎng)是2,D、E分別為AB、AC的中點(diǎn),延長(zhǎng)BC至點(diǎn)F,使CF= BC,連接CD和EF.
(1)求證:DE=CF;
(2)求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠計(jì)劃生產(chǎn)A,B兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤(rùn)如下表:
A種產(chǎn)品 | B種產(chǎn)品 | |
成本(萬(wàn)元∕件) | 3 | 5 |
利潤(rùn)(萬(wàn)元∕件) | 1 | 2 |
(1)若工廠計(jì)劃獲利14萬(wàn)元,問A,B兩種產(chǎn)品應(yīng)分別生產(chǎn)多少件?
(2)若工廠投入資金不多于44萬(wàn)元,且獲利多于14萬(wàn)元,問工廠有哪幾種生產(chǎn)方案?
(3)在(2)條件下,哪種方案獲利最大?并求最大利潤(rùn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com