(2007•南昌)對于反比例函數(shù)y=,下列說法不正確的是( )
A.點(-2,-1)在它的圖象上
B.它的圖象在第一、三象限
C.當x>0時,y隨x的增大而增大
D.當x<0時,y隨x的增大而減小
【答案】分析:根據(jù)反比例函數(shù)的性質(zhì)用排除法解答.
解答:解:A、把點(-2,-1)代入反比例函數(shù)y=得-1=-1,正確;
B、∵k=2>0,∴圖象在第一、三象限,正確;
C、當x>0時,y隨x的增大而減小,不正確;
D、當x<0時,y隨x的增大而減小,正確.
故選C.
點評:本題考查了反比例函數(shù)y=(k≠0)的性質(zhì):
①當k>0時,圖象分別位于第一、三象限;當k<0時,圖象分別位于第二、四象限.
②當k>0時,在同一個象限內(nèi),y隨x的增大而減;當k<0時,在同一個象限,y隨x的增大而增大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《數(shù)據(jù)收集與處理》(06)(解析版) 題型:解答題

(2007•南昌)某學校舉行演講比賽,選出了10名同學擔任評委,并事先擬定從如下4個方案中選擇合理的方案來確定每個演講者的最后得分(滿分為10分):
方案1:所有評委所給分的平均數(shù).
方案2:在所有評委所給分中,去掉一個最高分和一個最低分,然后再計算其余給分的平均數(shù).
方案3:所有評委所給分的中位數(shù).
方案4:所有評委所給分的眾數(shù).
為了探究上述方案的合理性,先對某個同學的演講成績進行了統(tǒng)計實驗,如圖是這個同學的得分統(tǒng)計圖:
(1)分別按上述4個方案計算這個同學演講的最后得分;
(2)根據(jù)(1)中的結(jié)果,請用統(tǒng)計的知識說明哪些方案不適合作為這個同學演講的最后得分.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(03)(解析版) 題型:填空題

(2007•南昌)在Rt△ABC中,∠C=90°,a、b、c分別是∠A、∠B、∠C的對邊,若b=2a,則tanA=   

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2007•南昌)實驗與探究:
(1)在圖1,2,3中,已知平行四邊形ABCD的三個頂點A,B,D的坐標(如圖所示),求出圖1,2,3中的第四個頂點C的坐標,已求出圖1中頂點C的坐標是(5,2),圖2,3中頂點C的坐標分別是______,______;

(2)在圖4中,平行四邊形ABCD的頂點A,B,D的坐標(如圖所示),求出頂點C的坐標(C點坐標用含a,b,c,d,e,f的代數(shù)式表示);

歸納與發(fā)現(xiàn):
(3)通過對圖1,2,3,4的觀察和頂點C的坐標的探究,你會發(fā)現(xiàn):無論平行四邊形ABCD處于直角坐標系中哪個位置,當其頂點坐標為A(a,b),B(c,d),C(m,n),D(e,f)(如圖4)時,則四個頂點的橫坐標a,c,m,e之間的等量關系為______;縱坐標b,d,n,f之間的等量關系為______
(不必證明);運用與推廣:
(4)在同一直角坐標系中有拋物線y=x2-(5c-3)x-c和三個點,,H(2c,0)(其中c>0).問當c為何值時,該拋物線上存在點P,使得以G,S,H,P為頂點的四邊形是平行四邊形?并求出所有符合條件的P點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年江蘇省無錫市天一實驗學校中考數(shù)學二模試卷(解析版) 題型:解答題

(2007•南昌)某學校舉行演講比賽,選出了10名同學擔任評委,并事先擬定從如下4個方案中選擇合理的方案來確定每個演講者的最后得分(滿分為10分):
方案1:所有評委所給分的平均數(shù).
方案2:在所有評委所給分中,去掉一個最高分和一個最低分,然后再計算其余給分的平均數(shù).
方案3:所有評委所給分的中位數(shù).
方案4:所有評委所給分的眾數(shù).
為了探究上述方案的合理性,先對某個同學的演講成績進行了統(tǒng)計實驗,如圖是這個同學的得分統(tǒng)計圖:
(1)分別按上述4個方案計算這個同學演講的最后得分;
(2)根據(jù)(1)中的結(jié)果,請用統(tǒng)計的知識說明哪些方案不適合作為這個同學演講的最后得分.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年江西省中考數(shù)學試卷(解析版) 題型:解答題

(2007•南昌)實驗與探究:
(1)在圖1,2,3中,已知平行四邊形ABCD的三個頂點A,B,D的坐標(如圖所示),求出圖1,2,3中的第四個頂點C的坐標,已求出圖1中頂點C的坐標是(5,2),圖2,3中頂點C的坐標分別是______,______;

(2)在圖4中,平行四邊形ABCD的頂點A,B,D的坐標(如圖所示),求出頂點C的坐標(C點坐標用含a,b,c,d,e,f的代數(shù)式表示);

歸納與發(fā)現(xiàn):
(3)通過對圖1,2,3,4的觀察和頂點C的坐標的探究,你會發(fā)現(xiàn):無論平行四邊形ABCD處于直角坐標系中哪個位置,當其頂點坐標為A(a,b),B(c,d),C(m,n),D(e,f)(如圖4)時,則四個頂點的橫坐標a,c,m,e之間的等量關系為______;縱坐標b,d,n,f之間的等量關系為______
(不必證明);運用與推廣:
(4)在同一直角坐標系中有拋物線y=x2-(5c-3)x-c和三個點,H(2c,0)(其中c>0).問當c為何值時,該拋物線上存在點P,使得以G,S,H,P為頂點的四邊形是平行四邊形?并求出所有符合條件的P點坐標.

查看答案和解析>>

同步練習冊答案