【題目】如圖在8×8的正方形網(wǎng)格中,△ABC 的頂點在邊長為1的小正方形的頂點上.
(1)填空:∠ABC= ,BC= ;
(2)若點A在網(wǎng)格所在的坐標(biāo)平面里的坐標(biāo)為(1,﹣2),請你在圖中找出一點D,并作出以A、B、C、D四個點為頂點的平行四邊形,求出滿足條件的D點的坐標(biāo).
【答案】(1)135°,2;(2)D1(3,-4)或D2(7,-4)或D3(-1,0).
【解析】
(1)根據(jù)圖形知道CB是一個等腰三角形的斜邊,所以容易得出的度數(shù),利用勾股定理可以求出BC的長度;
(2)根據(jù)A點的坐標(biāo)(1,-2),并且ABCD為平行四邊形,如圖D的位置有三種情況.
解:(1)由圖形可得:∠ABC=45°+90°=135°,BC=;
故答案為:135°,2;
(2)滿足條件的D點共有3個,
以A、B、C、D四個點為頂點的四邊形為平行四邊形分別是.
其中第四個頂點的坐標(biāo)為:
D1(3,-4)或D2(7,-4)或D3(-1,0)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小格的頂點叫做格點.
(1)在圖1中以格點為頂點畫一個面積為10的正方形;
(2)在圖2中以格點為頂點畫一個三角形,使三角形三邊長分別為2、、;
(3)如圖3,點A、B、C是小正方形的頂點,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了保護(hù)環(huán)境,某開發(fā)區(qū)綜合治理指揮部決定購買A,B兩種型號的污水處理設(shè)備共10臺.已知用90萬元購買A型號的污水處理設(shè)備的臺數(shù)與用75萬元購買B型號的污水處理設(shè)備的臺數(shù)相同,每臺設(shè)備價格及月處理污水量如下表所示:
(1)求m的值;
(2)由于受資金限制,指揮部用于購買污水處理設(shè)備的資金不超過165萬元,問采用何種購買方案可以使得每月處理污水量的噸數(shù)為最多?并求出最多噸數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,BD⊥AC于點D,E為BC上一點,過E點作EF⊥AC,垂足為F,過點D作DH∥BC交AB于點H.
(1)請你補(bǔ)全圖形。
(2)求證:∠BDH=∠CEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解七年級學(xué)生的身體素質(zhì)情況,體育老師對該年級部分學(xué)生進(jìn)行了一分鐘跳繩次數(shù)的測試,并把測試成績繪制成如圖所示的頻數(shù)表和頻數(shù)直方圖(每組含前一個邊界值,不含后一個邊界值).
(1)參加測試的學(xué)生有多少人?
(2)求,的值,并把頻數(shù)直方圖補(bǔ)充完整.
(3)若該年級共有名學(xué)生,估計該年級學(xué)生一分鐘跳繩次數(shù)不少于次的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠B=40°,過點A的直線將這個三角形分成兩個等腰三角形,則∠C的度數(shù)為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程x2﹣(m﹣3)x﹣m2=0.
(1)證明:方程總有兩個不相等的實數(shù)根;
(2)設(shè)這個方程的兩個實數(shù)根為x1,x2,且|x1|=|x2|﹣2,求m的值及方程的根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com