【題目】下列方程中,無論a取何值時(shí),總是關(guān)于x的一元二次方程的是(

A. B.

C. D.

【答案】D

【解析】

本題根據(jù)一元二次方程的定義解答.一元二次方程必須滿足四個(gè)條件:(1)未知數(shù)的最高次數(shù)是2;(2)二次項(xiàng)系數(shù)不為0;(3)是整式方程;(4)含有一個(gè)未知數(shù).由這四個(gè)條件對(duì)四個(gè)選項(xiàng)進(jìn)行驗(yàn)證,滿足這四個(gè)條件者為正確答案.

A、原方程可化為:(2a-3)x2+6a-1=0,當(dāng)2a-3=0,即a=時(shí),原方程不是一元二次方程,錯(cuò)誤;

B、當(dāng)二次項(xiàng)系數(shù)a=0時(shí),方程不是一元二次方程,錯(cuò)誤;

C、原方程可化為:(a-1)x2+x+1=0,當(dāng)a-1=0,即a=1時(shí),原方程不是一元二次方程,錯(cuò)誤;

D、由于a2+1>0,故原方程是一元二次方程,正確.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+3與拋物線交于AB兩點(diǎn),點(diǎn)Ax軸上,點(diǎn)B的橫坐標(biāo)為.動(dòng)點(diǎn)P在拋物線上運(yùn)動(dòng)(不與點(diǎn)A、B重合),過點(diǎn)Py軸的平行線,交直線AB于點(diǎn)Q.當(dāng)PQ不與y軸重合時(shí),以PQ為邊作正方形PQMN,使MNy軸在PQ的同側(cè),連結(jié)PM.設(shè)點(diǎn)P的橫坐標(biāo)為m

1)求bc的值.

2)當(dāng)點(diǎn)N落在直線AB上時(shí),直接寫出m的取值范圍.

3)當(dāng)點(diǎn)PAB兩點(diǎn)之間的拋物線上運(yùn)動(dòng)時(shí),設(shè)正方形PQMN的周長(zhǎng)為C,求Cm之間的函數(shù)關(guān)系式,并寫出Cm增大而增大時(shí)m的取值范圍.

4)當(dāng)PQM與坐標(biāo)軸有2個(gè)公共點(diǎn)時(shí),直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=x﹣3與反比例函數(shù)y=的圖象相交于點(diǎn)A(4,n),與x軸相交于點(diǎn)B.

(1)填空:n的值為____,k的值為______;

(2)AB為邊作菱形ABCD,使點(diǎn)Cx軸正半軸上,點(diǎn)D在第一象限,求點(diǎn)D的坐標(biāo);

(3)觀察反比例函數(shù)y=的圖象,當(dāng)y≥﹣3時(shí),請(qǐng)直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了測(cè)量出樓房AC的高度,從距離樓底C處米的點(diǎn)D(點(diǎn)D與樓底C在同一水平面上)出發(fā),沿斜面坡度為i=1:的斜坡DB前進(jìn)30米到達(dá)點(diǎn)B,在點(diǎn)B處測(cè)得樓頂A的仰角為53°,求樓房AC的高度(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈,計(jì)算結(jié)果用根號(hào)表示,不取近似值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為美化校園,準(zhǔn)備在長(zhǎng)35米,寬20米的長(zhǎng)方形場(chǎng)地上,修建若干條寬度相同的道路,余下部分作草坪,并請(qǐng)全校學(xué)生參與方案設(shè)計(jì),現(xiàn)有3位同學(xué)各設(shè)計(jì)了一種方案,圖紙分別如圖l、圖2和圖3所示(陰影部分為草坪).

請(qǐng)你根據(jù)這一問題,在每種方案中都只列出方程不解.

①甲方案設(shè)計(jì)圖紙為圖l,設(shè)計(jì)草坪的總面積為600平方米.

②乙方案設(shè)計(jì)圖紙為圖2,設(shè)計(jì)草坪的總面積為600平方米.

③丙方案設(shè)計(jì)圖紙為圖3,設(shè)計(jì)草坪的總面積為540平方米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀,再填空解答:

方程的根為

方程的根為.

⑴.方程的根是

⑵.若是關(guān)于x的一元二次方程的兩個(gè)實(shí)數(shù)根,那么與系數(shù)a、b、c的關(guān)系是:

⑶.如果是方程的兩個(gè)根,根據(jù)⑵所得的結(jié)論,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,M是AC的中點(diǎn),E、F是BC上的兩點(diǎn),且BE=EF=FC.則BN:NQ:QM等于( )

A. 6:3:2 B. 2:1:1 C. 5:3:2 D. 1:1:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB于點(diǎn)P,AP=2,BP=6,APC=30°,則CD的長(zhǎng)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售櫻桃,已知櫻桃的進(jìn)價(jià)為15/千克,如果售價(jià)為20/千克,那么每天可售出250千克,如果售價(jià)為25/千克,那么每天可售出200千克,經(jīng)調(diào)查發(fā)現(xiàn):每天的銷售量y(千克)與售價(jià)x(元/千克)之間 存在一次函數(shù)關(guān)系.

(1)求yx之間的函數(shù)關(guān)系式;

(2)若該超市每天要獲得利潤(rùn)810元,同時(shí)又要讓消費(fèi)者得到實(shí)惠,則售價(jià)x應(yīng)定于多少元?

(3)若櫻桃的售價(jià)不得高于28/千克,請(qǐng)問售價(jià)定為多少時(shí),該超市每天銷售櫻桃所獲的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案