【題目】如圖,拋物線y=2(x-2)2與平行于x軸的直線交于點A,B,拋物線頂點為C,△ABC為等邊三角形,求S△ABC.
【答案】
【解析】
過B作BP⊥x軸交于點P,連接AC,BC,由拋物線y=得C(2,0),
于是得到對稱軸為直線x=2,設B(m,n),根據(jù)△ABC是等邊三角形,得到BC=AB=2m-4,∠BCP=∠ABC=60°,求出PB=PC=(m-2),由于PB=n=,于是得到
(m-2)=,解方程得到m的值,然后根據(jù)三角形的面積公式即可得到結果.
解:過B作BP⊥x軸交于點P,連接AC,BC,
由拋物線y=得C(2,0),
∴對稱軸為直線x=2,
設B(m,n),
∴CP=m-2,
∵AB∥x軸,
∴AB=2m-4,
∵△ABC是等邊三角形,
∴BC=AB=2m-4,∠BCP=∠ABC=60°,
∴PB=PC=(m-2),
∵PB=n=,
∴(m-2)=,
解得m=,m=2(不合題意,舍去),
∴AB=,BP=,
∴S△ABC=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,DE∥BC,那么在下列三角形中,與△EBD相似的三角形是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:關于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數(shù)).
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若方程的兩個實數(shù)根都是整數(shù),求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,一次函數(shù)的圖象與 y軸交于點B(0,2),與反比例函數(shù)的圖象交于點A (4,-1).
(1)求反比例函數(shù)的表達式和一次函數(shù)表達式;
(2)若點C是y軸上一點,且BC=BA,請直接寫出點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù)y=ax2+bx+c的三項系數(shù)分別為a、b、c,則定義[a,b,c]為該函數(shù)的“特征數(shù)”.如:函數(shù)y=x2+3x-2的“特征數(shù)”是[1,3,-2],函數(shù)y=-x+4的“特征數(shù)”是[0,-1,4].如果將“特征數(shù)”是[2,0,4]的函數(shù)圖象向左平移3個單位,得到一個新的函數(shù)圖象,那么這個新圖象相應的函數(shù)表達式是__________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在校園文化藝術節(jié)中,九年級一班有1名男生和2名女生獲得美術獎,另有2名男生和2名女生獲得音樂獎.
(1)從獲得美術獎和音樂獎的7名學生中選取1名參加頒獎大會,求剛好是男生的概率;
(2)分別從獲得美術獎、音樂獎的學生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以△ABC的BC邊上一點O為圓心的圓,經(jīng)過A、B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,若AC=FC.
(1)求證:AC是⊙O的切線:
(2)若BF=8,DF=,求⊙O的半徑;
(3)若∠ADB=60°,BD=1,求陰影部分的面積.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一貨輪在A處測得燈塔P在貨輪的北偏西23°的方向上,隨后貨輪以80海里/時的速度按北偏東30°的方向航行,1小時后到達B處,此時又測得燈塔P在貨輪的北偏西68°的方向上,求此時貨輪距燈塔P的距離PB.(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有長為 24m 的籬笆,現(xiàn)一面利用墻(墻的最大可用長度 a 為 10m)圍成中間隔有一道籬笆的長方形花圃,設花圃的寬 AB 為 xm,面積為 Sm2.
(1) 求 S 與 x 的函數(shù)關系式及 x 值的取值范圍;
(2) 要圍成面積為 45m2 的花圃,AB 的長是多少米?
(3) 當 AB 的長是多少米時,圍成的花圃的面積最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com