(2012•包頭)如圖,△ABC內(nèi)接于⊙O,∠BAC=60°,⊙O的半徑為2,則BC的長(zhǎng)為
2
3
2
3
(保留根號(hào)).
分析:首先過(guò)點(diǎn)O作OD⊥BC于D,由垂徑定理可得BC=2BD,又由圓周角定理,可求得∠BOC的度數(shù),然后根據(jù)等腰三角形的性質(zhì),求得∠OBC的度數(shù),利用余弦函數(shù),即可求得答案.
解答:解:過(guò)點(diǎn)O作OD⊥BC于D,
則BC=2BD,
∵△ABC內(nèi)接于⊙O,∠BAC=60°,
∴∠BOC=2∠A=120°,
∵OB=OC,
∴∠OBC=∠OCB=
180°-∠BOC
2
=30°,
∵⊙O的半徑為2,
∴BD=OB•cos∠OBC=2×
3
2
=
3
,
∴BC=2
3

故答案為:2
3
點(diǎn)評(píng):此題考查了圓周角定理、垂徑定理、等腰三角形的性質(zhì)以及三角函數(shù)等知識(shí).此題難度不大,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•包頭)如圖,攔水壩的橫斷面為梯形ABCD,壩頂寬AD=5米,斜坡AB的坡度i=1:3(指坡面的鉛直高度AE與水平寬度BE的比),斜坡DC的坡度i=1:1.5,已知該攔水壩的高為6米.
(1)求斜坡AB的長(zhǎng);
(2)求攔水壩的橫斷面梯形ABCD的周長(zhǎng).
(注意:本題中的計(jì)算過(guò)程和結(jié)果均保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•包頭)如圖,直線y=
1
2
x-2與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C在直線AB上,且點(diǎn)C的縱坐標(biāo)為-1,點(diǎn)D在反比例函數(shù)y=
k
x
的圖象上,CD平行于y軸,S△OCD=
5
2
,則k的值為
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•包頭)如圖,在平面直角坐標(biāo)系中,點(diǎn)A在x軸上,△ABO是直角三角形,∠ABO=90°,點(diǎn)B的坐標(biāo)為(-1,2),將△ABO繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A1B1O,則過(guò)A1,B兩點(diǎn)的直線解析式為
y=3x+5
y=3x+5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•包頭)如圖,將△ABC紙片的一角沿DE向下翻折,使點(diǎn)A落在BC邊上的A′點(diǎn)處,且DE∥BC,下列結(jié)論:
①∠AED=∠C;②
A′D
DB
=
A′E
EC
;③BC=2DE;④S四邊形ADA′E=S△DBA′+S△EA′C
其中正確結(jié)論的個(gè)數(shù)是
4
4
個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案