【題目】如圖,在△ABC中,DAB的中點,ECD的中點, 過點CCF//ABAE的延長線于點F,連接BF

(1) 求證:DBCF

(2) 如果ACBC,試判斷四邊形BDCF的形狀,并證明你的結(jié)論.

【答案】(1)證明見解析;(2)四邊形BDCF是矩形,理由見解析.

【解析】試題分析:(1)根據(jù)CF∥AB,可知∠DAE=∠CFE,得出△ADE≌△FCE,再根據(jù)等量代換可知DB=CF,

2)根據(jù)DB=CF,DB∥CF,可知四邊形BDCF為平行四邊形,再根據(jù)AC=BCAD=DB,得出四邊形BDCF是矩形.

試題解析:(1)證明:∵CF∥AB

∴∠DAE=∠CFE,

△ADE△FCE中,

∴△ADE≌△FCEAAS),

∴AD=CF,

∵AD=DB,

∴DB=CF;

2)四邊形BDCF是矩形,

證明:∵DB=CF,DB∥CF

四邊形BDCF為平行四邊形,

∵AC=BC,AD=DB

∴CD⊥AB,

平行四邊形BDCF是矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列圖形中,既是軸對稱圖形,又是中心對稱圖形的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明得到育才學(xué)校數(shù)學(xué)課外興趣小組成員的年齡情況統(tǒng)計如下表:

年齡(歲)

13

14

15

16

人數(shù)(人)

5

15

x

10-x

那么對于不同x的值,則下列關(guān)于年齡的統(tǒng)計量不會發(fā)生變化的是( 。

A. 眾數(shù),中位數(shù)B. 中位數(shù),方差C. 平均數(shù),中位數(shù)D. 平均數(shù),方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點EAB上的點(不與A,B重合),△ADE與△FDE關(guān)于DE對稱,作射線CF,與DE的延長線相交于點G,連接AG

1)當(dāng)∠ADE=15°時,求∠DGC的度數(shù);

2)若點EAB上移動,請你判斷∠DGC的度數(shù)是否發(fā)生變化,若不變化,請證明你的結(jié)論;若會發(fā)生變化,請說明理由;

3)如圖2, 當(dāng)點F落在對角線BD上時,點MDE的中點,連接AMFM,請你判斷四邊形AGFM的形狀,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

如圖,在正方形ABCD中,點EF分別在CD、BC上,且BF=CE,連接BE、AF相交于點G,則下列結(jié)論不正確的是( )

ABE=AF B∠DAF=∠BEC C∠AFB+∠BEC=90° DAG⊥BE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“十年樹木,百年樹人”,教師的素養(yǎng)關(guān)系到國家的未來.我市某區(qū)招聘音樂教師采用筆試、專業(yè)技能測試、說課三種形式進行選拔,這三項的成績滿分均為100分,并按235的比例納入總分.最后,按照成績的排序從高到低依次錄取.該區(qū)要招聘2名音樂教師,通過筆試、專業(yè)技能測試篩選出前6名選手進入說課環(huán)節(jié),這6名選手的各項成績見下表:

序號

1

2

3

4

5

6

筆試成績/分

66

90

86

64

65

84

專業(yè)技能測試成績/分

95

92

93

80

88

92

說課成績/分

85

78

86

88

94

85

(1)寫出說課成績的中位數(shù)、眾數(shù);

(2)已知序號為1,2,3,4號選手的成績分別為84.2分,84.6分,88.1分,80.8分,請你判斷這6名選手中序號是多少的選手將被錄用?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有下列命題

一組對邊平行,一組對角相等的四邊形是平行四邊形.

兩組對角分別相等的四邊形是平行四邊形.

一組對邊相等,一組對角相等的四邊形是平行四邊形.

一組對邊平行,一條對角線被另一條對角線平分的四邊形是平行四邊形.

1)上述四個命題中,是真命題的是   (填寫序號);

2)請選擇一個真命題進行證明.(寫出已知、求證,并完成證明)

已知:   

求證:   

證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,已知AD =8,折疊紙片使AB邊與對角線AC

重合,點B落在點F處,折痕為AE,且EF=3,則AB的長為( )

A. 3 B. 4

C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在校園文化藝術(shù)節(jié)中,九年級一班有1名男生和2名女生獲得美術(shù)獎,另有2名男生和2名女生獲得音樂獎.

(1)從獲得美術(shù)獎和音樂獎的7名學(xué)生中選取1名參加頒獎大會,求剛好是男生的概率;

(2)分別從獲得美術(shù)獎、音樂獎的學(xué)生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.

查看答案和解析>>

同步練習(xí)冊答案