【題目】拋物線y=ax2+bx+c的頂點D(﹣1,2),與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2﹣4ac<0;②a+b+c>0;③c﹣a=2;④方程ax2+bx+c﹣2=0有兩個相等的實數(shù)根. 其中正確的結(jié)論是(

A.③④
B.②④
C.②③
D.①④

【答案】A
【解析】解:∵拋物線與x軸有2個交點,

∴△=b2﹣4ac>0,所以①錯誤;

∵拋物線y=ax2+bx+c的頂點D(﹣1,2),

∴拋物線的對稱軸為直線x=﹣1,

而拋物線與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,

∴拋物線與x軸的另一個交點A在點(0,0)和(1,0)之間,

∴x=1時,y<0,

∴a﹣b+c<0,所以②錯誤;

∵拋物線的對稱軸為直線x=﹣ =﹣1,

∴b=2a,

∵x=﹣1時,y=2,

即a﹣b+c=2,

∴a﹣2a+c=2,即c﹣a=2,所以③正確;

∵拋物線y=ax2+bx+c的頂點D(﹣1,2),

即x=﹣1時,y有最大值2,

∴拋物線與直線y=2只有一個公共點,

∴方程ax2+bx+c﹣2=0有兩個相等的實數(shù)根,所以④正確.

故選A.

【考點精析】本題主要考查了二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系和拋物線與坐標(biāo)軸的交點的相關(guān)知識點,需要掌握二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標(biāo):(0,c);一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當(dāng)b2-4ac>0時,圖像與x軸有兩個交點;當(dāng)b2-4ac=0時,圖像與x軸有一個交點;當(dāng)b2-4ac<0時,圖像與x軸沒有交點.才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD中,EF分別是AB、AD邊上的點,DE與CF交于點G.
(1)如圖1,若四邊形ABCD是正方形,且DE⊥CF,求證:DE=CF;

(2)如圖2,若四邊形ABCD是矩形,且DE⊥CF,求證: = ;

(3)如圖3,若四邊形ABCD是平行四邊形,當(dāng)∠B=∠EGF時,第(2)問的結(jié)論是否成立?若成立給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,已知AB=CD,點E、F分別為AD、BC的中點,延長BA、CD,分別交射線FE于P、Q兩點.求證:∠BPF=∠CQF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,Px軸正半軸一動點,BC平分PC平分,OD平分

的度數(shù);

求證:;

在運動中,的值是否變化?若發(fā)生變化,說明理由;若不變,求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班將買一些乒乓球和乒乓球拍.了解信息如下:甲、乙兩家商店出售兩種同樣品牌的乒乓球和乒乓球拍.乒乓球拍每副定價30元,乒乓球每盒定價5元;經(jīng)洽談:甲店每買一副球拍贈一盒乒乓球;乙店全部按定價的9折優(yōu)惠.該班需球拍5副,乒乓球若干盒(不小于5).問:

(1)當(dāng)購買乒乓球x盒時,兩種優(yōu)惠辦法各應(yīng)付款多少元?(用含x的代數(shù)式表示)

(2)如果要購買15盒乒乓球時,請你去辦這件事,你打算去哪家商店購買?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,坐標(biāo)原點O到一次函數(shù)y=kx-2k+1圖像的距離的最大值為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,E,F分別是AD,BC的中點,AFBE交于點G,ECDF交于點H,若GH=3,則AD=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角△ABC中,AB=AC=8,以AB為直徑的半圓O交斜邊BC于D,則陰影部分面積為(結(jié)果保留π)( )

A.24﹣4π
B.32﹣4π
C.32﹣8π
D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高空拋物極其危險,是我們必須杜絕的行為.據(jù)研究,高空拋物下落的時間t(單位:s)和高度 h(單位:m)近似滿足公式 t=(不考慮風(fēng)速的影響)

(1) 50m 高空拋物到落地所需時間 t1 是多少 s, 100m 高空拋物到落地所 需時間 t2 是多少 s;

(2)t2 t1 的多少倍?

(3)經(jīng)過 1.5s,高空拋物下落的高度是多少?

查看答案和解析>>

同步練習(xí)冊答案