【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)Pxy),若點(diǎn)Q的坐標(biāo)為(x,|xy|),則稱(chēng)點(diǎn)Q為點(diǎn)P的“關(guān)聯(lián)點(diǎn)”.

1)請(qǐng)直接寫(xiě)出點(diǎn)(22)的“關(guān)聯(lián)點(diǎn)”的坐標(biāo);

2)如果點(diǎn)P在函數(shù)yx1的圖象上,其“關(guān)聯(lián)點(diǎn)”Q與點(diǎn)P重合,求點(diǎn)P的坐標(biāo);

3)如果點(diǎn)Mmn)的“關(guān)聯(lián)點(diǎn)”N在函數(shù)yx2的圖象上,當(dāng)0m2時(shí),求線(xiàn)段MN的最大值.

【答案】1)(2,0);(2)(2,1);(3)當(dāng)0m2時(shí),線(xiàn)段MN的最大值為6

【解析】

1)根據(jù)“關(guān)聯(lián)點(diǎn)”的定義結(jié)合點(diǎn)的坐標(biāo)即可得出結(jié)論;

2)根據(jù)點(diǎn)P在函數(shù)yx1的圖象上,即可得出Pxx1)、Qx,1),再根據(jù)點(diǎn)P、Q重合即可得出關(guān)于x的一元一次方程,解之即可得出結(jié)論;

3)根據(jù)“關(guān)聯(lián)點(diǎn)”的定義找出點(diǎn)N的坐標(biāo),分mnmn兩種情況考慮,根據(jù)點(diǎn)N在函數(shù)yx2的圖象上,即可用含m的代數(shù)式表示出n,再根據(jù)兩點(diǎn)間的距離公式即可找出MN的關(guān)系式,利用一次(二次)函數(shù)的性質(zhì)即可求出線(xiàn)段MN的最大值.

解:(1)∵|22|=0,

∴點(diǎn)(22)的“關(guān)聯(lián)點(diǎn)”的坐標(biāo)為(2,0).

2)∵點(diǎn)P在函數(shù)yx1的圖象上,

Px,x1),則點(diǎn)Q的坐標(biāo)為(x1),

∵點(diǎn)Q與點(diǎn)P重合,

x11,解得:x2,

∴點(diǎn)P的坐標(biāo)為(2,1).

3)∵點(diǎn)Mm,n),

∴點(diǎn)Nm,|mn|).

∵點(diǎn)N在函數(shù)yx2的圖象上,

∴|mn|=m2

i)當(dāng)mn時(shí),mnm2,

n=﹣m2+m

Mm,﹣m2+m),Nm,m2).

0m2,

MN=|yMyN|=|﹣m2+mm2|=m|2m1|.

①當(dāng)0m時(shí),MN=﹣2m2+m=﹣2m2+,

∴當(dāng)m時(shí),MN取最大值,最大值為

②當(dāng)m2時(shí),MN2m2m2m2+,

當(dāng)m2時(shí),MN取最大值,最大值為6

ii)當(dāng)mn時(shí),nmm2,

nm2+m,

Mm,m2+m),Nmm2).

0m2,

MN=|yMyN|=|m2+mm2|=m

當(dāng)m2時(shí),MN取最大值2

綜上所述:當(dāng)0m2時(shí),線(xiàn)段MN的最大值為6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個(gè),藍(lán)球1個(gè),黃球若干個(gè),現(xiàn)從中任意摸出一個(gè)球是紅球的概率為

(1)求口袋中黃球的個(gè)數(shù);

(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請(qǐng)用“樹(shù)狀圖法”或“列表法”,

求兩次摸 出都是紅球的概率;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線(xiàn)yx軸交于A,B兩點(diǎn),交y軸于點(diǎn)C,連接BC.過(guò)點(diǎn)ABC的平行線(xiàn)交拋物線(xiàn)于點(diǎn)D

1)求△ABC的面積;

2)已知點(diǎn)M是拋物線(xiàn)的頂點(diǎn),在直線(xiàn)AD上有一動(dòng)點(diǎn)E,x軸上有一動(dòng)點(diǎn)F,當(dāng)ME+BE最小時(shí),求|CFEF|的最大值及此時(shí)點(diǎn)F的坐標(biāo);

3)如圖2,在y軸正半軸上取點(diǎn)Q,使得CBCQ,點(diǎn)Px軸上一動(dòng)點(diǎn),連接PC,將△CPQ沿PC折疊至△CPQ′.連接BQ,BQ′,QQ′,當(dāng)△BQQ′為等腰三角形時(shí),直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA3,OB4,OC5,將線(xiàn)段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線(xiàn)段BO′,下列結(jié)論:BOA可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;點(diǎn)OO′的距離為4;AOB150°;④S四邊形AOBO6+3;其中正確的結(jié)論是(  )

A. ①②③ B. ①③④ C. ②③④ D. ①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,對(duì)稱(chēng)軸是直線(xiàn)x=-1,有以下結(jié)論:①abc>0;4ac<b22a+b=0;a-b+c>0.其中正確的結(jié)論的個(gè)數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某條公共汽車(chē)線(xiàn)路收支差額與乘客量的函數(shù)關(guān)系如圖所示(收支差額車(chē)票收入支出費(fèi)用),由于目前本條線(xiàn)路虧損,公司有關(guān)人員提出了兩條建議:建議(Ⅰ)不改變支出費(fèi)用,提高車(chē)票價(jià)格;建議(Ⅱ)不改變車(chē)票價(jià)格,減少支出費(fèi)用. 下面給出的四個(gè)圖形中,實(shí)線(xiàn)和虛線(xiàn)分別表示目前和建議后的函數(shù)關(guān)系,則( )

A. ①反映了建議(Ⅰ),③反映了建議(Ⅱ) B. ②反映了建議(Ⅰ),④反映了建議(Ⅱ)

C. ①反映了建議(Ⅱ),③反映了建議(Ⅰ) D. ②反映了建議(Ⅱ),④反映了建議(Ⅰ)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為測(cè)量瀑布AB的高度,測(cè)量人員在瀑布對(duì)面山上的D點(diǎn)處測(cè)得瀑布頂端A點(diǎn)的仰角是,測(cè)得瀑布底端B點(diǎn)的俯角是,AB與水平面垂直又在瀑布下的水平面測(cè)得,注:C、G、F三點(diǎn)在同一直線(xiàn)上,于點(diǎn),斜坡,坡角(參考數(shù)據(jù):,,,,,)

求測(cè)量點(diǎn)D距瀑布AB的距離精確到

求瀑布AB的高度精確到

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°

(1)先作∠ACB的平分線(xiàn)交AB邊于點(diǎn)P,再以點(diǎn)P為圓心,PA長(zhǎng)為半徑作⊙P;(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法)

(2)請(qǐng)你判斷(1)中BC與⊙P的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司推出一款新產(chǎn)品,通過(guò)市場(chǎng)調(diào)研后,按三種顏色受歡迎的程度分別對(duì)A顏色、B顏色、C顏色的產(chǎn)品在成本的基礎(chǔ)上分別加價(jià)40%,50%,60%出售(三種顏色產(chǎn)品的成本一樣),經(jīng)過(guò)一個(gè)季度的經(jīng)營(yíng)后,發(fā)現(xiàn)C顏色產(chǎn)品的銷(xiāo)量占總銷(xiāo)量的40%,三種顏色產(chǎn)品的總利潤(rùn)率為51.5%,第二個(gè)季度,公司決定對(duì)A產(chǎn)品進(jìn)行升級(jí),升級(jí)后A產(chǎn)品的成本提高了25%,其銷(xiāo)量提高了60%,利潤(rùn)率為原來(lái)的兩倍;B產(chǎn)品的銷(xiāo)量提高到與升級(jí)后的A產(chǎn)品的銷(xiāo)量一樣,C產(chǎn)品的銷(xiāo)量比第一季度提高了50%,則第二個(gè)季度的總利潤(rùn)率為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案