【題目】如圖,港口A在觀測站O的正東方向,OA=6km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達(dá)B處,此時(shí)從觀測站O處測得該船位于北偏東60°的方向,則該船航行的距離(即AB的長)為( )

A.3 km
B.3 km
C.4 km
D.(3 ﹣3)km

【答案】A
【解析】解:作AC⊥OB于點(diǎn)C,如圖所示,

由已知可得,
∠COA=30°,OA=6km,
∵AC⊥OB,
∴∠OCA=∠BCA=90°,
∴OA=2AC,∠OAC=60°,
∴AC=3km,∠CAD=30°,
∵∠DAB=15°,
∴∠CAB=45°,
∴∠CAB=∠B=45°,
∴BC=AC,
∴AB=
故選A.
【考點(diǎn)精析】本題主要考查了關(guān)于方向角問題的相關(guān)知識(shí)點(diǎn),需要掌握指北或指南方向線與目標(biāo)方向 線所成的小于90°的水平角,叫做方向角才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)一電瓶小客車接到任務(wù)從景區(qū)大門出發(fā),向東走2千米到達(dá)A景區(qū),繼續(xù)向東走2.5千米到達(dá)B景區(qū),然后又回頭向西走8.5千米到達(dá)C景區(qū),最后回到景區(qū)大門.

(1)以景區(qū)大門為原點(diǎn),向東為正方向,以1個(gè)單位長表示1千米,建立如圖所示的數(shù)軸,請(qǐng)?jiān)跀?shù)軸上表示出上述A、B、C三個(gè)景區(qū)的位置.

(2)若電瓶車充足一次電能行走15千米,則該電瓶車能否在一開始充好電而途中不充電的情況下完成此次任務(wù)?請(qǐng)計(jì)算說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮從家步行到公交車站臺(tái),等公交車去學(xué)校. 圖中的折線表示小亮的行程s(km)與所花時(shí)間t(min)之間的函數(shù)關(guān)系. 下列說法錯(cuò)誤的是

A. 他離家8km共用了30min B. 他等公交車時(shí)間為6min

C. 他步行的速度是100m/min D. 公交車的速度是350m/min

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格線的交點(diǎn)叫格點(diǎn),格點(diǎn)的邊上的一點(diǎn)(請(qǐng)利用網(wǎng)格作圖,保留作圖痕跡).

(1)過點(diǎn)的垂線,交于點(diǎn);

(2)線段 的長度是點(diǎn)OPC的距離;

(3)的理由是 ;

(4)過點(diǎn)C的平行線;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ABC=90°,點(diǎn)D,F(xiàn)分別是AC,AB的中點(diǎn),CEDB,BEDC.

(1)求證:四邊形DBEC是菱形;

(2)若AD=3,DF=1,求四邊形DBEC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,∠B=60°,點(diǎn)E在邊BC上,點(diǎn)F在邊CD上.若EB=2,DF=3,∠EAF=60°,則△AEF的面積等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y1=kx+b與雙曲線y2= 交于A、B兩點(diǎn),它們的橫坐標(biāo)分別為1和5.
(1)當(dāng)m=5時(shí),求直線AB的解析式及△AOB的面積;
(2)當(dāng)y1>y2時(shí),直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把形如x2=a(其中a是常數(shù)且a≥0)這樣的方程叫做x的完全平方方程.

x2=9,(3x﹣2)2=25,都是完全平方方程.

那么如何求解完全平方方程呢?

探究思路:

我們可以利用乘方運(yùn)算把二次方程轉(zhuǎn)化為一次方程進(jìn)行求解.

如:解完全平方方程x2=9的思路是:由(+3)2=9,(﹣3)2=9可得x1=3,x2=﹣3.

解決問題:

(1)解方程:(3x﹣2)2=25.

解題思路:我們只要把 3x﹣2 看成一個(gè)整體就可以利用乘方運(yùn)算進(jìn)一步求解方程了.

解:根據(jù)乘方運(yùn)算,得3x﹣2=5 3x﹣2=   

分別解這兩個(gè)一元一次方程,得x1=,x2=﹣1.

(2)解方程

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b分別對(duì)應(yīng)數(shù)軸上A、B兩點(diǎn),并且滿足|a﹣2|+(3a+2b)2=0,點(diǎn)P為數(shù)軸上一個(gè)動(dòng)點(diǎn),它對(duì)應(yīng)的數(shù)是x

(1)填空:a=   ,b=   ,AB=   

(2)P為線段AB上一點(diǎn),并且PA=3PB,求x的值;

(3)P點(diǎn)從A點(diǎn)出發(fā)以每秒2個(gè)單位的速度運(yùn)動(dòng),那么出發(fā)幾秒鐘后,線段PA=4PB?

查看答案和解析>>

同步練習(xí)冊答案