【題目】已知關(guān)于的方程.
求證:無(wú)論取任何實(shí)數(shù)時(shí),方程總有實(shí)數(shù)根;
當(dāng)拋物線(為正整數(shù))圖象與軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),求此拋物線的解析式;
已知拋物線恒過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo).
【答案】證明見(jiàn)解析 ; 、
【解析】
(1)分類(lèi)討論:該方程是一元一次方程和一元二次方程兩種情況.當(dāng)該方程為一元二次方程時(shí),根的判別式△≥0,方程總有實(shí)數(shù)根;
(2)通過(guò)解kx2+(2k+1)x+2=0得到k=1,由此得到該拋物線解析式為y=x2+3x+2,結(jié)合圖象回答問(wèn)題.
(3)根據(jù)題意得到kx2+(2k+1)x+2-y=0恒成立,由此列出關(guān)于x、y的方程組,通過(guò)解方程組求得該定點(diǎn)坐標(biāo).
證明:①當(dāng)時(shí),方程為,所以,方程有實(shí)數(shù)根,
②當(dāng)時(shí),∵,即,
∴無(wú)論取任何實(shí)數(shù)時(shí),方程總有實(shí)數(shù)根;
解:令,則,
解關(guān)于的一元二次方程,得,,
∵二次函數(shù)的圖象與軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),且為正整數(shù),
∴.
∴該拋物線解析式為;
依題意得恒成立,即恒成立,
則,
解得或.
所以該拋物線恒過(guò)定點(diǎn)、.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A是反比例函數(shù)y=圖象上的任意一點(diǎn),過(guò)點(diǎn)A作AB∥x軸,AC∥y軸,分別交反比例函數(shù)y=的圖象于點(diǎn)B,C,連接BC,E是BC上一點(diǎn),連接并延長(zhǎng)AE交y軸于點(diǎn)D,連接CD,則S△DEC﹣S△BEA=_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線經(jīng)過(guò)A(﹣4,0),B(0,﹣4),C(2,0)三點(diǎn).
(1)求拋物線解析式;
(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△MOA的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出當(dāng)m為何值時(shí),S有最大值,這個(gè)最大值是多少?
(3)若點(diǎn)Q是直線y=﹣x上的動(dòng)點(diǎn),過(guò)Q做y軸的平行線交拋物線于點(diǎn)P,判斷有幾個(gè)Q能使以點(diǎn)P,Q,B,O為頂點(diǎn)的四邊形是平行四邊形的點(diǎn),直接寫(xiě)出相應(yīng)的點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在圍棋盒中有 x 顆黑色棋子和 y 顆白色棋子,從盒中隨機(jī)地取出一個(gè)棋子,如果它是黑色棋子的概率是;如果往盒中再放進(jìn) 10 顆黑色棋子,則取得黑色棋子的概率變?yōu)?/span>.求 x 和 y 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】同時(shí)擲兩個(gè)質(zhì)地均勻的骰子,兩個(gè)骰子向上一面的點(diǎn)數(shù)相同的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)在的邊上,交于,交于,若添加條件________,則四邊形是矩形;若添加條件________,則四邊形是菱形;若添加條件________,則四邊形是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AN∥CB,B、N在AC同側(cè),BM、CN交于點(diǎn)D,AC=BC,且∠A+∠MDN=180°.
(1)如圖1,當(dāng)∠NAC=90°,求證:BM=CN;
(2)如圖2,當(dāng)∠NAC為銳角時(shí),試判斷BM與CN關(guān)系并證明;
(3)如圖3,在(1)的條件下,且∠MBC=30°,一動(dòng)點(diǎn)E在線段BM上運(yùn)動(dòng)過(guò)程中,連CE,將線段CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至CF,取BE中點(diǎn)P,連AP、FP.設(shè)四邊形APFC面積為S,若AM=﹣1,MC=1,在E點(diǎn)運(yùn)動(dòng)過(guò)程中,請(qǐng)寫(xiě)出S的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC是等腰直角三角形,點(diǎn)E為線段AC上一點(diǎn)(E點(diǎn)不和A、C兩點(diǎn)重合),連接BE并延長(zhǎng)BE,在BE的延長(zhǎng)線上找一點(diǎn)D,使AD⊥CD,點(diǎn)F為線段AD上一點(diǎn)(F點(diǎn)不和A、D兩點(diǎn)重合),連接CF,交BD于點(diǎn)G
(1)如圖1,若AB=,CD=1,F是線段AD的中點(diǎn),求CF;
(2)如圖2,若點(diǎn)E是線段AC中點(diǎn),CF⊥BD,求證:CF+DE=BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰中,,D為BC的中點(diǎn),過(guò)點(diǎn)C作于點(diǎn)G,過(guò)點(diǎn)B作于點(diǎn)B,交CG的延長(zhǎng)線于點(diǎn)F,連接DF交AB于點(diǎn)E.
(1)求證:;
(2)求證:AB垂直平分DF;
(3)連接AF,試判斷的形狀,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com