【題目】這是一道我們曾經(jīng)探究過的問題:如圖1.等腰直角三角形中,,.直線經(jīng)過點,過作于點,過作于點.易證得≌.(無需證明),我們將這個模型稱為“一線三等角”或者叫“K形圖”.接下來,我們就利用這個模型來解決一些問題:
(模型應用)
(1)如圖2.已知直線l1:與與坐標軸交于點A、B.以AB為直角邊作等腰直角三角形ABC,若存在,請求出C的坐標;不存在,若說明理由.
(2)如圖3已知直線l1:與坐標軸交于點A、B.將直線l1繞點A逆時針旋轉(zhuǎn)45°至直線l2.直線l2在x軸上方的圖像上是否存在一點Q,使得△QAB是以QA為底的等腰直角三角形?若存在,請求出直線BQ的函數(shù)關系式;若不存在,說明理由.
(拓展延伸)
(3)直線AB:與軸負半軸、軸正半軸分別交于A、B兩點.分別以OB、AB為邊,點B為直角頂點在第一、二象限內(nèi)作等腰直角△OBF和等腰直角△ABE,連EF交y軸于P點,如圖4,△EPB的面積是否確定?若確定,請求出具體的值;若不確定,請說明理由.
【答案】(1)存在,或或或;(2)存在,;(3)確定,面積是:1.
【解析】
(1)存在,如圖①、圖②,C1、C2、C3、C4都符合,根據(jù)“一線三等角”模型,易證得三角形全等,從而求得點C的坐標;
(2)存在,過作交直線l2于,△QAB就是以QA為底邊的等腰直角三角形,根據(jù)“一線三等角”模型,易證得, 從而求得點Q的坐標,繼而求得直線BQ的函數(shù)關系式;
(3)確定,面積是:1.過作軸于,根據(jù)“一線三等角”模型,易證得,可求得E、F的坐標,從而求得直線EF的解析式,繼而求得P點坐標,可以求得△EPB的面積.
(1)∵直線l1:與與坐標軸交于點A、B,
∴A、B的坐標分別是A(3,0)、B(0,4),則,
如圖①:過作軸于,作軸于,
根據(jù)“一線三等角”模型,易證得
∴
∴的坐標是
如圖②:過作軸于,作軸于,
根據(jù)“一線三等角”模型,易證得,
∴
∴的坐標是
(2)存在,
如圖,過作交直線l2于,
由于是旋轉(zhuǎn)角,
∴,
則△QAB就是以QA為底邊的等腰直角三角形,
∵直線l1:與與坐標軸交于點A、B,
∴A、B的坐標分別是A(-4,0)、B(0,3),
則,
過作軸于,
根據(jù)“一線三等角”模型,易證得
∴
∴的坐標是
設直線BQ的解析式是:
把B(0,3),代入得,
解得:
∴直線BQ的解析式是:
(3)確定,面積是:1.
∵直線AB:與軸負半軸、軸正半軸分別交于A、B兩點,
∴A、B的坐標分別是A(-2,0)、B(0,1),
則,
如圖,過作軸于,
根據(jù)“一線三等角”模型,易證得
∴,
∴的坐標是
∵是等腰直角三角形,∴
∴的坐標是
設直線EF的解析式是:
把,代入得,
解得:
∴直線EF的解析式是:
∴直線EF與軸的交點坐標是
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是的直徑,是上一點,于點,過點作的切線,交的延長線于點,連接.
求證:與相切;
設交于點,若,,求由劣弧、線段和所圍成的圖形面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=6,點D在邊AC上,AD的中垂線交BC于點E.若∠AED=∠B,CE=3BE,則CD等于( 。
A. B. 2C. D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】許昌芙蓉湖位于許昌市水系建設總體規(guī)劃中部,上游接納清泥河來水,下游為鹿鳴湖等水系供水,承擔著承上啟下的重要作用,是利用有限的水資源、形成良好的水生態(tài)環(huán)境打造生態(tài)宜居城市的重要部分.某校課外興趣小組想測量位于芙蓉湖兩端的A,B兩點之間的距離他沿著與直線AB平行的道路EF行走,走到點C處,測得∠ACF=45°,再向前走300米到點D處,測得∠BDF=60°.若直線AB與EF之間的距離為200米,求A,B兩點之間的距離(結(jié)果保留一位小數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,直線分別交軸、軸于、兩點,且,滿足,且,是常數(shù)。直線平分,交軸于點。
(1)若的中點為,連接交于,求證:;
(2)如圖2,過點作,垂足為,猜想與間的數(shù)量關系,并證明你的猜想;
(3)如圖3,在軸上有一個動點(在點的右側(cè)),連接,并作等腰,其中,連接并延長交軸于點,當點在運動時,的長是否發(fā)生改變?若改變,請求出它的變化范圍;若不變,求出它的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在他家里的時鐘上安裝了一個電腦軟件,他設定當鐘聲在n點鐘響起后,下一次則在(3n﹣1)小時后響起,例如鐘聲第一次在3點鐘響起,那么第2次在(3×3﹣1=8)小時后,也就是11點響起,第3次在(3×11﹣1=32)小時后,即7點響起,以此類推…;現(xiàn)在第1次鐘聲響起時為2點鐘,那么第3次響起時為_____點,第2017次響起時為_____點(如圖鐘表,時間為12小時制).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠B=30°,O是BC上一點,以點O為圓心,OB長為半徑作圓,恰好經(jīng)過點A,并與BC交于點D.
(1)判斷直線CA與⊙O的位置關系,并說明理由;
(2)若AB=4,求圖中陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若經(jīng)過一個三角形某一頂點的一條直線可把它分成兩個小等腰三角形,那么我們稱該三角形為等腰三角形過該頂點的生成三角形.
(1)如圖,在等腰Rt△ABC中,AB=AC,∠A=90°,請問△ABC是否是生成三角形?請你說明理由.
(2)若△ABC是等腰三角形過頂點B的生成三角形,∠C是其最小的內(nèi)角,請?zhí)角蟆?/span>ABC與∠C之間的關系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com