【題目】如圖,一次函數(shù)y=mx+4的圖象與x軸相交于點(diǎn)A,與反比例函數(shù)y=的圖象相交于點(diǎn)B(1,6).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)設(shè)點(diǎn)P是x軸上一點(diǎn),若S△APB=18,直接寫出點(diǎn)P的坐標(biāo).
【答案】解:(1)把B(1,6)代入y=mx+4得:6=m+4,
m=2,
即一次函數(shù)的解析式是y=2x+4,
把B(1,6)代入y=得:6=,
k=6,
即反比例函數(shù)的解析式是y=;
(2)把y=0代入y=2x+4得:2x+4=0,
x=﹣2,
即A的坐標(biāo)是(﹣2,0),
分為兩種情況:①當(dāng)P在A的右邊時,
∵S△APB=18,
∴×AP×6=18,
AP=6,
∵A(﹣2,0),
∴P(4,0);
②當(dāng)P在A的左邊時,P的坐標(biāo)是(﹣8,0).
即P的坐標(biāo)是(4,0)或(﹣8,0).
【解析】(1)把B的坐標(biāo)代入一次函數(shù)和反比例函數(shù)的解析式求出即可;
(2)求出A的坐標(biāo),根據(jù)三角形的面積求出AP的值,根據(jù)A的坐標(biāo)即可得出答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為⊙O的內(nèi)接四邊形,且對角線AC為直徑,AD=BC,過點(diǎn)D作DG⊥AC,垂足為E,DG分別與AB及CB延長線交于點(diǎn)F、M.
(1)求證:四邊形ABCD是矩形;
(2)若點(diǎn)G為MF的中點(diǎn),求證:BG是⊙O的切線;
(3)若AD=4,CM=9,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若(x+2y)(2x-ky-1)的結(jié)果中不含xy項,則k的值為( )
A. 4 B. -4 C. 2 D. -2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在x、y軸的正半軸上,點(diǎn)D為對角線OB的中點(diǎn),點(diǎn)E(8,n)在邊AB上,反比例函數(shù)(k≠0)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)D、E,且tan∠BOA=.
(1)求反比例函數(shù)的解析式和n的值;
(2)若反比例函數(shù)的圖象與矩形的邊BC交于點(diǎn)F,將矩形折疊,使點(diǎn)O與點(diǎn)F重合,折痕分別與x、y軸正半軸交于點(diǎn)H、G,求G點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(20,0),以O(shè)A為直徑在第一象限內(nèi)作半圓C,點(diǎn)B是該半圓周上一動點(diǎn),連結(jié)OB、AB,并延長AB至點(diǎn)D,使DB=AB,過點(diǎn)D作x軸垂線,分別交x軸、直線OB于點(diǎn)E、F,點(diǎn)E為垂足,連結(jié)CF.
(1)當(dāng)∠AOB=30°時,求弧OB的長度;
(2)當(dāng)DE=16時,求線段EF的長;
(3)在點(diǎn)B運(yùn)動過程中,是否存在以點(diǎn)E、C、F為頂點(diǎn)的三角形與△AOB相似,若存在,請求出此
時點(diǎn)E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com