【題目】如圖2是裝有三個(gè)小輪的手拉車(chē)在“爬”樓梯時(shí)的側(cè)面示意圖,定長(zhǎng)的輪架桿OA,OB,OC抽象為線(xiàn)段,有OA=OB=OC,且∠AOB=120°,折線(xiàn)NG﹣GH﹣HE﹣EF表示樓梯,GH,EF是水平線(xiàn),NG,HE是鉛垂線(xiàn),半徑相等的小輪子⊙A,⊙B與樓梯兩邊都相切,且AO∥GH.
(1)如圖2①,若點(diǎn)H在線(xiàn)段OB時(shí),則 的值是;
(2)如果一級(jí)樓梯的高度HE=(8 +2)cm,點(diǎn)H到線(xiàn)段OB的距離d滿(mǎn)足條件d≤3cm,那么小輪子半徑r的取值范圍是

【答案】
(1)
(2)(11﹣3 )cm≤r≤8cm
【解析】解:(1.)如圖2①,P為⊙B的切點(diǎn),連接BP并延長(zhǎng),作OL⊥BP于點(diǎn)L,交GH于點(diǎn)M,
∴∠BPH=∠BLO=90°,
∵AO∥GH,
∴BL∥AO∥GH,
∵∠AOB=120°,
∴∠OBL=60°,
在RT△BPH中,HP= BP= r,
∴ML=HP= r,
OM=r,
∵BL∥GH,
= = = ,
故答案為:
(2.)作HD⊥OB,P為切點(diǎn),連接BP,PH的延長(zhǎng)線(xiàn)交BD延長(zhǎng)線(xiàn)于點(diǎn)L,

∴∠LDH=∠LPB=90°,
∴△LDH∽△LPB,
=
∵AO∥PB,∠AOD=120°,
∴∠B=60°,
∴∠BLP=30°,
∴DL= DH,LH=2DH,
∵HE=(8 +2)cm
∴HP=8 +2﹣r,
PL=HP+LH=8 +2﹣r+2DH,
= ,解得DH= r﹣4 ﹣1,
∵0cm≤DH≤3cm,
∴0≤ r﹣4 ﹣1≤3,
解得:(11﹣3 )cm≤r≤8cm.
故答案為:(11﹣3 )cm≤r≤8cm.
(1)作P為⊙B的切點(diǎn),連接BP并延長(zhǎng),作OL⊥BP于點(diǎn)L,交GH于點(diǎn)M,求出ML,OM,根據(jù) = 求解,(2)作HD⊥OB,P為切點(diǎn),連接BP,PH的延長(zhǎng)線(xiàn)交BD延長(zhǎng)線(xiàn)于點(diǎn)L,由△LDH∽△LPB,得出 = ,再根據(jù)30°的直角三角形得出線(xiàn)段的關(guān)系,得到DH和r的關(guān)系式,根據(jù)0≤d≤3的限制條件,列不等式組求范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCDE內(nèi)時(shí),∠A與∠1+∠2之間有始終不變的關(guān)系是(  )

A. ∠A=∠1+∠2 B. 2∠A=∠1+∠2 C. 3∠A=∠1+∠2 D. 3∠A=2(∠1+∠2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在四邊形ABCD中,∠DAB被對(duì)角線(xiàn)AC平分,且AC2=ABAD.我們稱(chēng)該四邊形為“可分四邊形”,∠DAB稱(chēng)為“可分角”.

(1)如圖2,在四邊形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求證:四邊形ABCD為“可分四邊形”;
(2)如圖3,四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,如果∠DCB=∠DAB,則求∠DAB的度數(shù);
(3)現(xiàn)有四邊形ABCD為“可分四邊形”,∠DAB為“可分角”,且AC=4,則△DAB的最大面積等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九(3)班為了組隊(duì)參加學(xué)校舉行的“五水共治”知識(shí)競(jìng)賽,在班里選取了若干名學(xué)生,分成人數(shù)相同的甲、乙兩組,進(jìn)行了四次“五水共治”模擬競(jìng)賽,成績(jī)優(yōu)秀的人數(shù)和優(yōu)秀率分別繪制成如圖統(tǒng)計(jì)圖.
根據(jù)統(tǒng)計(jì)圖,解答下列問(wèn)題:
(1)第三次成績(jī)的優(yōu)秀率是多少?并將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)已求得甲組成績(jī)優(yōu)秀人數(shù)的平均數(shù) =7,方差 =1.5,請(qǐng)通過(guò)計(jì)算說(shuō)明,哪一組成績(jī)優(yōu)秀的人數(shù)較穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在棋盤(pán)中建立如圖的直角坐標(biāo)系,三顆棋子A,O,B的位置如圖,它們分別是(﹣1,1),(0,0)和(1,0).
(1)如圖2,添加棋子C,使A,O,B,C四顆棋子成為一個(gè)軸對(duì)稱(chēng)圖形,請(qǐng)?jiān)趫D中畫(huà)出該圖形的對(duì)稱(chēng)軸;
(2)在其他格點(diǎn)位置添加一顆棋子P,使A,O,B,P四顆棋子成為一個(gè)軸對(duì)稱(chēng)圖形,請(qǐng)直接寫(xiě)出棋子P的位置的坐標(biāo).(寫(xiě)出2個(gè)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】射線(xiàn)QN與等邊△ABC的兩邊AB,BC分別交于點(diǎn)M,N,且AC∥QN,AM=MB=2cm,QM=4cm.動(dòng)點(diǎn)P從點(diǎn)Q出發(fā),沿射線(xiàn)QN以每秒1cm的速度向右移動(dòng),經(jīng)過(guò)t秒,以點(diǎn)P為圓心, cm為半徑的圓與△ABC的邊相切(切點(diǎn)在邊上),請(qǐng)寫(xiě)出t可取的一切值(單位:秒)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班有50位學(xué)生,每位學(xué)生都有一個(gè)序號(hào),將50張編有學(xué)生序號(hào)(從1號(hào)到50號(hào))的卡片(除序號(hào)不同外其它均相同)打亂順序重新排列,從中任意抽取1張卡片.
(1)在序號(hào)中,是20的倍數(shù)的有:20,40,能整除20的有:1,2,4,5,10(為了不重復(fù)計(jì)數(shù),20只計(jì)一次),求取到的卡片上序號(hào)是20的倍數(shù)或能整除20的概率;
(2)若規(guī)定:取到的卡片上序號(hào)是k(k是滿(mǎn)足1≤k≤50的整數(shù)),則序號(hào)是k的倍數(shù)或能整除k(不重復(fù)計(jì)數(shù))的學(xué)生能參加某項(xiàng)活動(dòng),這一規(guī)定是否公平?請(qǐng)說(shuō)明理由;
(3)請(qǐng)你設(shè)計(jì)一個(gè)規(guī)定,能公平地選出10位學(xué)生參加某項(xiàng)活動(dòng),并說(shuō)明你的規(guī)定是符合要求的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①, 的邊上的高,且cm,cm,點(diǎn)從點(diǎn)出發(fā),沿線(xiàn)段向終點(diǎn)運(yùn)動(dòng),其速度與時(shí)間的關(guān)系如圖②所示,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為(s),的面積為(cm2 ).

(1)在點(diǎn)沿向點(diǎn)運(yùn)動(dòng)的過(guò)程中,它的速度是 cm/s,用含的代數(shù)式表示線(xiàn)段的長(zhǎng)是 cm,變量之間的函數(shù)表達(dá)式為;

(2)當(dāng)時(shí),求的值.當(dāng)每增加1時(shí),求的變化情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點(diǎn)分別為D、E、F,∠A=80°,點(diǎn)P為⊙O上任意一點(diǎn)(不與E、F重合),則∠EPF=

查看答案和解析>>

同步練習(xí)冊(cè)答案