【題目】已知,在平面直角坐標(biāo)系中,點(diǎn)M、N的坐標(biāo)分別為(1,4)和(3,0),點(diǎn)Q是y軸上的一個(gè)動(dòng)點(diǎn),且M、N、Q三點(diǎn)不在同一直線上,當(dāng)△MNQ的周長(zhǎng)最小時(shí),則點(diǎn)Q的坐標(biāo)是___.
【答案】(0,3).
【解析】
根據(jù)平面直角坐標(biāo)系找出N關(guān)于y軸的對(duì)稱點(diǎn)N′位置,連接MN′,根據(jù)軸對(duì)稱確定最短路線問(wèn)題交點(diǎn)即為△MNQ的周長(zhǎng)最小的點(diǎn)Q的位置,根據(jù)MD和N′D確定△MDN′是等腰直角三角形,進(jìn)而求得△QON′是等腰直角三角形,即可求得OQ的長(zhǎng).
作點(diǎn)N關(guān)于y軸的對(duì)稱點(diǎn)N′,連接MN′交y軸于點(diǎn)Q,
則此時(shí)△MNQ的周長(zhǎng)最小,
理由:∵點(diǎn)N的坐標(biāo)是(3,0),
∴點(diǎn)N′的坐標(biāo)是(-3,0),
過(guò)點(diǎn)M作MD⊥x軸,垂足為點(diǎn)D
∵點(diǎn)M的坐標(biāo)是(1,4)
∴N′D=MD=4
∴∠MN′D=45°,
∴N′O=OQ=3,
即點(diǎn)Q的坐標(biāo)是(0,3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:a、b為有理數(shù),下列說(shuō)法:①若 a、b互為相反數(shù),則;②若則;③若,則;④若,則是正數(shù).其中正確的有
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖O為直線AB上一點(diǎn),∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)求∠BOD的度數(shù);
(2)試判斷OE是否平分∠BOC,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結(jié)AC,過(guò)上一點(diǎn)E作EG∥AC交CD的延長(zhǎng)線于點(diǎn)G,連結(jié)AE交CD于點(diǎn)F,且EG=FG,連結(jié)CE.
(1)求證:△ECF∽△GCE;
(2)求證:EG是⊙O的切線;
(3)延長(zhǎng)AB交GE的延長(zhǎng)線于點(diǎn)M,若tanG=,AH=3,求EM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的平面直角坐標(biāo)系中,直線AB:y=k1x+b1與直線AD:y=k2x+b2相交于點(diǎn)A(1,3),且點(diǎn)B坐標(biāo)為(0,2),直線AB交x軸負(fù)半軸于點(diǎn)C,直線AD交x軸正半軸于點(diǎn)D.
(1)求直線AB的函數(shù)解析式;
(2)若△ACD的面積為9,解不等式:k2x+b2>0;
(3)若點(diǎn)M為x軸一動(dòng)點(diǎn),當(dāng)點(diǎn)M在什么位置時(shí),使AM+BM的值最?求出此時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)經(jīng)濟(jì)的快速發(fā)展讓眾多國(guó)家感受到了威脅,隨著釣魚島事件、南海危機(jī)、薩德入韓等一系列事件的發(fā)生,國(guó)家安全一再受到威脅,所謂“國(guó)家興亡,匹夫有責(zé)”,某校積極開(kāi)展國(guó)防知識(shí)教育,九年級(jí)甲、乙兩班分別選5名同學(xué)參加“國(guó)防知識(shí)”比賽,其預(yù)賽成績(jī)?nèi)鐖D所示:
根據(jù)上圖填寫下表:
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
甲班 | ______ | ______ | ||
乙班 | ______ | 10 |
根據(jù)上表數(shù)據(jù),分別從平均數(shù)、中位數(shù)、眾數(shù)、方差的角度分析哪個(gè)班的成績(jī)較好.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,□ABCD中,O是CD的中點(diǎn),連接AO并延長(zhǎng),交BC的延長(zhǎng)線于點(diǎn)E.
求證: ≌;
連接,當(dāng)______°和______°時(shí),四邊形ACED是正方形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C為線段AB上一點(diǎn),點(diǎn)D為BC的中點(diǎn),且AB=10cm,BC=4cm
(1)圖中共有 條線段.
(2)求AD的長(zhǎng).
(3)若點(diǎn)E在線段AB上,且AE=3CE,直接寫出BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)利用求根公式計(jì)算,結(jié)合①②③你能得出什么猜想?
①方程x2+2x+1=0的根為x1=________,x2=________,x1+x2=________,x1·x2=________.
②方程x2-3x-1=0的根為x1=________,x2=________,x1+x2=________,x1·x2=________.
③方程3x2+4x-7=0的根為x1=_______,x2=________,x1+x2=________,x1·x2=________.
(2)利用求根公式計(jì)算:一元二次方程ax2+bx+c=0(a≠0,且b2-4ac≥0)的兩根為x1=________,x2=________,x1+x2=________,x1·x2=________.
(3)利用上面的結(jié)論解決下面的問(wèn)題:
設(shè)x1、x2是方程2x2+3x-1=0的兩個(gè)根,根據(jù)上面的結(jié)論,求下列各式的值:
①; ②.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com