【題目】已知關于的一元二次方程 有實數(shù)根.

(1)求的取值范圍;

(2)若 兩個實數(shù)根分別為 ,且,求的值.

【答案】(1);(2)

【解析】試題分析:1)由關于x的一元二次方程 x2+3x-m=0有實數(shù)根,即可得判別式≥0,即可得不等式32+4m≥0,繼而求得答案;(2)由根與系數(shù)的關系,即可得x1+x2=-3x1x2=-m,又由x12+x22=x1+x22-2x1x2=11,即可得方程:(-32+2m=11,解此方程即可求得答案.

試題解析:1∵關于x的一元二次方程有實數(shù)根,

∴△=b24ac=32+4m0,

解得:m;

(2)∵x1+x2=3、x1x2=m,

=(x1+x2)22x1x2=11,

∴(3)2+2m=11,

解得:m=1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中反比例函數(shù)yb0)與二次函數(shù)yax2+bxa0)的圖象大致是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為6E,F分別是ABBC邊上的點,且∠EDF=45°,將DAE繞點D逆時針旋轉90°,得到DCM

(1)求證:EF=MF;

(2)AE=2,求FC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經過點A(2,﹣3),且與x軸交點坐標為(﹣1,0),(3,0)

(1)求拋物線的解析式;

(2)在直線AB下方拋物線上找一點D,求出使得△ABD面積最大時點D的坐標;

(3)M在拋物線上,點N在拋物線的對稱軸上,是否存在以點A,B,M,N為頂點的四邊形是平行四邊形?若存在,直接寫出所有符合條件的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙P的圓心P(m,n)在拋物線y=上.

(1)寫出mn之間的關系式;

(2)當⊙P與兩坐標軸都相切時,求出⊙P的半徑;

(3)若⊙P的半徑是8,且它在x軸上截得的弦MN,滿足0≤MN≤2時,求出m、n的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,線段 AB4,M AB 的中點,動點 P 到點 M 的距離是 1,連接 PB,線段

PB 繞點 P 逆時針旋轉 90°得到線段 PC,連接 AC,則線段 AC 長度的最大值是_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知m+n=7,點A(mn)在一個反比例函數(shù)的圖象上,點A與坐標原點的距離為5,現(xiàn)將這個反比例函數(shù)圖象繞原點順時針旋轉90o,得到一個新的反比例函數(shù)圖象,則這個新的反比例函數(shù)的解析式是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A是反比例函數(shù)y=(x>0)的圖象上的一個動點,連接OA,OB⊥OA,且OB=2OA,那么經過點B的反比例函數(shù)圖象的表達式為( 。

A. y=﹣ B. y= C. y=﹣ D. y=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A、B兩點的坐標分別為(―2,0,0,1),⊙C的圓心坐標為(0,―1),半徑為1.若D是⊙C上的一個動點,射線ADy軸交于點E,則△ABE面積的最大值是( )

A. 4 B. C. D. 3

查看答案和解析>>

同步練習冊答案