【題目】如圖,⊙RtABC的外接圓,∠ACB=90°,點(diǎn)I是△ABC的內(nèi)心,CI的延長線交⊙O于點(diǎn)D,連接AD.

(1)求證:DA=DI.

(2)AB=10,AC=6,求AD、CD的長.

【答案】(1)證明見解析;(2)AD=5;CD=7.

【解析】

(1)連接AI,AD,BD,運(yùn)用圓周角定理、內(nèi)切圓的性質(zhì)及三角形外角的性質(zhì)問題即可求得∠AID=∠DAI,得出DA=DI.

(2)連接,過點(diǎn),垂足為點(diǎn), 是⊙的直徑可得 °

再證是等腰直角三角形,在中和中,由勾股定理得結(jié)果.

解:(1)證明:連接

∵點(diǎn)是△的內(nèi)心

,

,

(2)連接過點(diǎn),垂足為點(diǎn)

是⊙的直徑

°

°

°

°

∵在 °

°

1 2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OA,OC分別位于x軸,y軸上,經(jīng)過A,C兩點(diǎn)的拋物線變x軸于另一點(diǎn)D,連接AC.請(qǐng)你只用無刻度的直尺按要求畫圖.

(1)在圖1中的拋物線上,畫出點(diǎn)E,使DE=AC;

(2)在圖2中的拋物線上,畫出拋物線的頂點(diǎn)F.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=(a﹣1)x2+3x﹣6的圖象與x軸的交點(diǎn)為A和B,若點(diǎn)B一定在坐標(biāo)原點(diǎn)和(1,0)之間,且B點(diǎn)不與原點(diǎn)和(1,0)重合,那么a的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在人教版八年級(jí)上冊(cè)數(shù)學(xué)教材P53的數(shù)學(xué)活動(dòng)中有這樣一段描述:在四邊形ABCD中,若AD=CD,AB=CB,則我們把這種兩組鄰邊分別相等的四邊形叫做箏形,試猜想箏形的角.對(duì)角線有什么性質(zhì)?然后選擇其中一條性質(zhì)用全等三角形的知識(shí)證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=60°AC=2AB,AD平分∠BACBC于點(diǎn)D,延長DB至點(diǎn)F,使BF=BD連接AF

1)求證:AF=CD

2)若CE平分∠ACBAB于點(diǎn)E,試猜想AC,AF,AE三條線段之間的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是O的直徑,BC為O的切線,D為O上的一點(diǎn),CD=CB,延長CD交BA的延長線于點(diǎn)E.

(1)求證:CD為O的切線;

(2)若BD的弦心距OF=1,ABD=30°,求圖中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于點(diǎn)E,點(diǎn)FAC上,且BD=DF.

(1)求證:CF=EB;

(2)請(qǐng)你判斷AE、AFBE之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D在線段BC上,∠EDB=∠C,BE⊥DE,垂足為E,DE與AB相交于點(diǎn)F.試探究線段BE與DF的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓桌正上方的燈泡(看作一個(gè)點(diǎn))發(fā)出的光線照射桌面后,在地面上形成陰影.已知桌面的直徑為12 m,桌面距離地面1 m.若燈泡距離地面3 m,則地面上陰影部分的面積為 ( )

A. 036πm2 B. 081πm2 C. 2πm2 D. 3.24πm2

查看答案和解析>>

同步練習(xí)冊(cè)答案