【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.
求證:(1)△ABE≌△CDF;
(2)四邊形BFDE是平行四邊形.
【答案】證明見(jiàn)解析.
【解析】試題分析:(1)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形的對(duì)邊相等,對(duì)角相等,即可證得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;
(2)由四邊形ABCD是平行四邊形,根據(jù)平行四邊形對(duì)邊平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可證得DE=BF,然后根據(jù)對(duì)邊平行且相等的四邊形是平行四邊形,即可證得四邊形BFDE是平行四邊形.
試題解析:證明:(1)∵四邊形ABCD是平行四邊形,
∴∠A=∠C,AB=CD,
在△ABE和△CDF中,
∵,
∴△ABE≌△CDF(SAS);
(2)∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∵AE=CF,
∴AD-AE=BC-CF,
即DE=BF,
∴四邊形BFDE是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于兩個(gè)已知圖形G1、G2,在G1上任取一點(diǎn)P,在G2上任取一點(diǎn)Q,當(dāng)線段PQ的長(zhǎng)度最小時(shí),我們稱這個(gè)最小長(zhǎng)度為G1、G2的“密距”.例如,如上圖,,,,則點(diǎn)A與射線OC之間的“密距”為,點(diǎn)B與射線OC之間的“密距”為3,如果直線y=x-1和雙曲線之間的“密距”為,則k值為( )
A. k=4 B. k=-4 C. k=6 D. k=-6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形紙片ABCD中,∠A=60°,將紙片折疊,點(diǎn)A、D分別落在A′、D′處,且A′D′經(jīng)過(guò)B,EF為折痕,當(dāng)D′F⊥CD時(shí), 的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某中學(xué)為備戰(zhàn)省運(yùn)會(huì),在校運(yùn)動(dòng)隊(duì)的學(xué)生中進(jìn)行了全能選手的選拔,并將參加選拔學(xué)生的綜合成績(jī)分成四組,繪成了如下尚不完整的統(tǒng)計(jì)圖表.
組別 | 成績(jī) | 組中值 | 頻數(shù) |
第一組 | 90≤x<100 | 95 | 4 |
第二組 | 80≤x<90 | 85 | m |
第三組 | 70≤x<80 | 75 | n |
第四組 | 60≤x<70 | 65 | 21 |
根據(jù)圖表信息,回答下列問(wèn)題:
(1)參加活動(dòng)選拔的學(xué)生共有人;表中m= , n=;
(2)若將各組的組中值視為該組的平均值,請(qǐng)你估算參加選拔學(xué)生的平均成績(jī);
(3)將第一組中的4名學(xué)生記為A、B、C、D,由于這4名學(xué)生的體育綜合水平相差不大,現(xiàn)決定隨機(jī)挑選其中兩名學(xué)生代表學(xué)校參賽,試通過(guò)畫(huà)樹(shù)形圖或列表的方法求恰好選中A和B的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的袋子中裝有20個(gè)球,其中紅球6個(gè),白球和黑球若干個(gè),每個(gè)球除顏色外完全相同.
(1)小明通過(guò)大量重復(fù)試驗(yàn)(每次將球攪勻后,任意摸出一個(gè)球,記下顏色后放回)發(fā)現(xiàn),摸出的黑球的頻率在0.4附近擺動(dòng),請(qǐng)你估計(jì)袋中黑球的個(gè)數(shù).
(2)若小明摸出的第一個(gè)球是白球,不放回,從袋中余下的球中再任意摸出一個(gè)球,摸出白球的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,不正確的是( )
A. 一個(gè)數(shù)與它的倒數(shù)的積是1
B. 一個(gè)數(shù)的絕對(duì)值與它的相反數(shù)的商是
C. 兩個(gè)數(shù)的商為,這兩個(gè)數(shù)互為相反數(shù)
D. 兩個(gè)數(shù)的積為1,這兩個(gè)數(shù)互為倒數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面上,矩形ABCD與直徑為QP的半圓K如圖1擺放,分別延長(zhǎng)DA和QP交于點(diǎn)O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.讓線段OD及矩形ABCD位置固定,將線段OQ連帶著半圓K一起繞著點(diǎn)O按逆時(shí)針?lè)较蜷_(kāi)始旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0°≤α≤60°).
發(fā)現(xiàn):
(1)當(dāng)α=0°,即初始位置時(shí),點(diǎn)P直線AB上.(填“在”或“不在”)求當(dāng)α是多少時(shí),OQ經(jīng)過(guò)點(diǎn)B.
(2)在OQ旋轉(zhuǎn)過(guò)程中,簡(jiǎn)要說(shuō)明α是多少時(shí),點(diǎn)P,A間的距離最。坎⒅赋鲞@個(gè)最小值;
(3)如圖2,當(dāng)點(diǎn)P恰好落在BC邊上時(shí),求a及S陰影
拓展:
如圖3,當(dāng)線段OQ與CB邊交于點(diǎn)M,與BA邊交于點(diǎn)N時(shí),設(shè)BM=x(x>0),用含x的代數(shù)式表示BN的長(zhǎng),并求x的取值范圍.
探究:當(dāng)半圓K與矩形ABCD的邊相切時(shí),求sinα的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一只不透明的袋子中裝有4個(gè)質(zhì)地、大小均相同的小球,這些小球分別標(biāo)有數(shù)字3,4,5,x.甲、乙兩人每次同時(shí)從袋中各隨機(jī)摸出1個(gè)球,并計(jì)算摸出的這2個(gè)小球上數(shù)字之和,記錄后都將小球放回袋中攪勻,進(jìn)行重復(fù)試驗(yàn).實(shí)驗(yàn)數(shù)據(jù)如下表:
摸球總次數(shù) | 10 | 20 | 30 | 60 | 90 | 120 | 180 | 240 | 330 | 450 |
“和為8”出現(xiàn)的頻數(shù) | 2 | 10 | 13 | 24 | 30 | 37 | 58 | 82 | 110 | 150 |
“和為8”出現(xiàn)的頻率 | 0.20 | 0.50 | 0.43 | 0.40 | 0.33 | 0.31 | 0.32 | 0.34 | 0.33 | 0.33 |
解答下列問(wèn)題:
(1)如果實(shí)驗(yàn)繼續(xù)進(jìn)行下去,根據(jù)上表數(shù)據(jù),出現(xiàn)“和為8”的頻率將穩(wěn)定在它的概率附近.估計(jì)出現(xiàn)“和為8”的概率是;
(2)當(dāng)x=7時(shí),請(qǐng)用列表法或樹(shù)狀圖法計(jì)算“和為8”的概率;并判斷x=7是否可能.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)O是AC邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的角平分線于點(diǎn)E,交∠BCA的外角平分線于點(diǎn)F.
(1)求證:EO=FO;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com