【題目】如圖,四邊形ABCD中,ABCD,點OBD上,以O為圓心的圓恰好經(jīng)過A、BC三點,⊙OBDE,交ADF,且,連接OA、OF

(1)求證:四邊形ABCD是菱形;

(2)若∠AOF3FOE,求∠ABC的度數(shù).

【答案】(1)見解析(2)80°

【解析】

1)先根據(jù)圓的性質(zhì)得:∠CBD=ABD,由平行線的性質(zhì)得:∠ABD=CDB,根據(jù)直徑和等式的性質(zhì)得:,由一組對邊平行且相等可得四邊形ABCD是平行四邊形,由AB=BC可得結(jié)論;

(2)先設(shè)∠FOE=x,則∠AOF=3x,可求出∠ABC=4x,根據(jù)∠ABC+BAD=180°,列方程得:4x+2x+180-3x=180,求出x的值,則可得∠ABC的度數(shù)

1)證明:∵,
∴∠CBD=ABD
CDAB,
∴∠ABD=CDB,
∴∠CBD=CDB
CB=CD
BE是⊙O的直徑,

,
,
AB=BC=CD,
CDAB,
∴四邊形ABCD是菱形;

(2)∵∠AOF=3FOE
設(shè)∠FOE=x,則∠AOF=3x
AOD=FOE+AOF=4x,
OA=OF,
∴∠OAF=OFA=180-3x°
OA=OB,
∴∠OAB=OBA=2x
∴∠ABC=4x,
BCAD,
∴∠ABC+BAD=180°,
4x+2x+180-3x=180
x=20°,

∴∠ABC=80°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某快遞公司每天上午9001000為集中攬件和派件時段,甲倉庫用來攬收快件,乙倉庫用來派發(fā)快件,該時段內(nèi)甲、乙兩倉庫的快件數(shù)量y(件)與時間x(分)之間的函數(shù)圖象如圖所示,那么當兩倉庫快遞件數(shù)相同時,此刻的時間為__________;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,的頂點均在格點上.

(Ⅰ)的長等于__________;

(Ⅱ)請用無刻度的直尺,在如圖所示的網(wǎng)格中,畫出點,點E上,且,點F上,使其滿足,并簡要說明點的位置是如何找到的(不要求證明)______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸于兩點,交軸于點直線經(jīng)過點

1)求拋物線的解析式;

2)點是直線下方的拋物線上一動點,過點軸于點交直線于點設(shè)點的橫坐標為的值;

3是第一象限對稱軸右側(cè)拋物線上的一點,連接拋物線的對稱軸上是否存在點.使得相似,且為直角,若存在,請直接寫出點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線AB//CD,直線EFAB于點E,交CD于點F,EP平分∠AEF,FP平分∠CFE,∠BEPα,∠DFPβ,則aβ( )

A.180°B.225°C.270°D.315°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為發(fā)展學生的核心素養(yǎng),培養(yǎng)學生的綜合能力,某學校計劃開設(shè)四門選修課程:樂器、舞蹈、繪畫、書法,學校采取隨機抽樣的方法進行問卷調(diào)查(每個被調(diào)查的學生必須選擇而且只能選擇其中一門).對調(diào)查的結(jié)果進行整理,繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:

1)本次共調(diào)查了多少名學生?

2)請將條形統(tǒng)計圖補充完整;

3)在被調(diào)查的學生中,選修書法的有2名男同學,其余為女同學,現(xiàn)要從中隨機抽取2名同學代表學校參加某社區(qū)組織的書法活動,請你用列表或畫樹狀圖的方法,求所抽取的2名同學恰好是1名男同學和1名女同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,投擲一枚均勻的硬幣,落地時正面或反面向上的可能性相同.有甲、乙兩人做投硬幣實驗,他們分別投硬幣100次,結(jié)果“正面向上”的次數(shù)為:甲60次、乙40次.

(1)求甲、乙做投硬幣實驗“正面向上”的頻率各是多少?

(2)若甲、乙同時做第101次投硬幣實驗,求“正面都向上”的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖ABC內(nèi)接于O,BDO的直徑,點PBD延長線上一點,且PAO的切線.

1)求證:;

2)若,求O的直徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在線段BD上,在BD的同側(cè)作等腰RtABC和等腰RtADE,其中∠ABC=AED=90°,CDBE、AE分別交于點P、M.對于下列結(jié)論:①△CAM∽△DEM;②CD=2BE;③MPMD=MAME;④2CB2=CPCM.其中正確的是( 。

A. ①②B. ①②③C. ①②③④D. ①③④

查看答案和解析>>

同步練習冊答案