【題目】如圖,拋物線L1y=-x22x3x軸于A,B兩點(diǎn),交y軸于M點(diǎn)拋物線L1向右平移2個(gè)單位得到拋物線L2,L2x軸于CD兩點(diǎn).

(1)求拋物線L2對(duì)應(yīng)的函數(shù)表達(dá)式;

(2)拋物線L1L2x軸上方的部分是否存在點(diǎn)N,使以A,C,MN為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;

(3)若點(diǎn)P是拋物線L1上的一個(gè)動(dòng)點(diǎn)(P不與點(diǎn)A,B重合),那么點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)Q是否在拋物線L2上?請(qǐng)說(shuō)明理由.

【答案】(1)y=-x22x3;(2)存在,N(2,3)N′(2,3);(3)點(diǎn)Q不在拋物線L2上.

【解析】

(1)由于是平移,所以拋物線的開(kāi)口方向和開(kāi)口大小不變,先求出L1與x軸的交點(diǎn),再求出L2與x軸的交點(diǎn),即可求出拋物線L2的解析式;

(2)因?yàn)槭瞧揭疲鶕?jù)平移的性質(zhì),連接各組對(duì)應(yīng)點(diǎn)的線段平行且相等,故存在符合條件的點(diǎn)N,即可求得N點(diǎn)坐標(biāo);

(3)先設(shè)出L1上的點(diǎn)(x1y1),進(jìn)而求得關(guān)于原點(diǎn)的對(duì)稱點(diǎn)(-x1,-y1),再將(-x1,-y1)代入函數(shù)L2的解析式,成立則在圖像上,不成立則不在圖像上.

解:(1)y0,得-x22x30,

  x1=-3,x21,

  A(3,0),B(1,0) ,

 ∵拋物線L1向右平移2個(gè)單位得拋物線L2

  ∴C(1,0),D(3,0),a=-1,

  ∴拋物線L2y=-(x1)(x3)

  y=-x22x3

(2)存在;令x0,得y3,

M(0,3),

 ∵拋物線L2L1向右平移2個(gè)單位得到的,

 ∴點(diǎn)N(2,3)L2上,且MN2MNAC,

又∵AC2

MNAC,

∴四邊形ACNM為平行四邊形.

同理,L1上的點(diǎn)N′(2,3)滿足N′MACN′MAC,

 ∴四邊形ACMN′是平行四邊形.

N(2,3)N′(2,3)即為所求.

(3)設(shè)P(x1,y1)L1上任意一點(diǎn)(y1≠0),

則點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)Q(x1,-y1)

,

將點(diǎn)Q的橫坐標(biāo)代入L2

得:

∴點(diǎn)Q不在拋物線L2上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于☉O,AB是☉O的直徑,CD平分∠ACB交☉O于點(diǎn)D,AB于點(diǎn)F,AECD于點(diǎn)H,連接CE、OH.

(1)延長(zhǎng)AB到圓外一點(diǎn)P,連接PC,PC2=PB·PA,求證:PC是☉O的切線;

(2)求證:CF·AE=AC·BC;

(3)=,O的半徑是,tanAECOH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知C為線段AB中點(diǎn),∠ACMαQ為線段BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),點(diǎn)P在射線CM上,連接PA,PQ,記BQkCP

1)若α60°,k1,

①如圖1,當(dāng)QBC中點(diǎn)時(shí),求∠PAC的度數(shù);

②直接寫(xiě)出PA、PQ的數(shù)量關(guān)系;

2)如圖2,當(dāng)α45°時(shí).探究是否存在常數(shù)k,使得②中的結(jié)論仍成立?若存在,寫(xiě)出k的值并證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是小章為學(xué)校舉辦的數(shù)學(xué)文化節(jié)沒(méi)計(jì)的標(biāo)志,在△ABC中,∠ACB90°,以△ABC的各邊為邊作三個(gè)正方形,點(diǎn)G落在HI上,若AC+BC6,空自部分面積為10.5,則陰影部分面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB45°,過(guò)OA上到點(diǎn)O的距離分別為13,57,911,的點(diǎn)作OA的垂線與OB相交,得到并標(biāo)出一組黑色梯形,它們的面積分別為S1S2,S3S4,,觀察圖中的規(guī)律,求出第10個(gè)黑色梯形的面積S10_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某校八年級(jí)體育科目訓(xùn)練情況,從八年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行了一次體育科目測(cè)試(把測(cè)試結(jié)果分為四個(gè)等級(jí):A級(jí):優(yōu)秀;B級(jí):良好;C級(jí):及格;D級(jí):不及格),并將測(cè)試結(jié)果繪成了如下兩幅不完整的統(tǒng)計(jì)圖請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問(wèn)題:

1)圖1的度數(shù)是__________,并把圖2條形統(tǒng)計(jì)圖補(bǔ)充完整.

2)抽取的這部分的學(xué)生的體育科目測(cè)試結(jié)果的中位數(shù)是在__________級(jí);

3)依次將優(yōu)秀、良好、及格、不及格記為90分、80分、70分、50分,請(qǐng)計(jì)算抽取的這部分學(xué)生體育的平均成績(jī).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l1yk1x+b過(guò)A0,﹣3),B5,2),直線l2yk2x+2

1)求直線l1的表達(dá)式;

2)當(dāng)x≥4時(shí),不等式k1x+bk2x+2恒成立,請(qǐng)寫(xiě)出一個(gè)滿足題意的k2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市組織全民健身活動(dòng),有100名男選手參加由跑、跳、投等10個(gè)田徑項(xiàng)目組成的“十項(xiàng)全能”比賽.其中25名選手的一百米跑成績(jī)排名,跳遠(yuǎn)成績(jī)排名與10項(xiàng)總成績(jī)的排名情況如圖所示,

甲、乙、丙表示三名男選手,下面有3個(gè)推斷:

①甲的一百米跑成績(jī)排名比10項(xiàng)總成績(jī)排名靠前;②乙的一百米跑成績(jī)排名比10項(xiàng)總成績(jī)排名靠后;③丙的一百米跑成績(jī)排名比跳遠(yuǎn)成績(jī)排名靠前.

其中合理的是(

A.B.C.①③D.①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為評(píng)估九年級(jí)學(xué)生在新冠肺炎疫情期間空中課堂的學(xué)習(xí)效果,某中學(xué)抽取了部分參加調(diào)研測(cè)試的學(xué)生成績(jī)作為樣本,并把樣本分為優(yōu)、良、中、差四類,繪制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息解答下列問(wèn)題:

1)在這次調(diào)查中,一共抽取了多少名學(xué)生;

2)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖;

3)該校九年級(jí)共有320人參加了這次調(diào)研測(cè)試,請(qǐng)估算該校九年級(jí)共有多少名學(xué)生的成績(jī)達(dá)到了優(yōu)秀?

查看答案和解析>>

同步練習(xí)冊(cè)答案