判斷題:
(1)在平面內(nèi),過直線外一點有且只有一條直線與已知直線垂直 ( )
(2)過直線上一點不存在直線與已知直線垂直. ( )
(3)過直線外一點A作的垂線,垂線的長度叫做點A到直線的距離.( )
(4)一條線段有無數(shù)條垂線. ( )
(5)如圖,線段AB與線段CD不可能互相垂直,因為它們不可能相交.( )
(6)互相垂直的兩條直線形成的四個角都等于90º. ( )
(1)對(2)錯(3)錯(4)對(5)錯(6)對
【解析】本題綜合考查了垂線的定義和性質(zhì),點到直線的距離.點到直線的距離是一個長度,而不是一個圖形,也就是垂線段的長度,而不是垂線段.過一點有且只有一條直線與已知直線垂直.注意:“有且只有”中,“有”指“存在”,“只有”指“唯一”,“過一點”的點在直線上或直線外都可以.
根據(jù)垂線的定義和性質(zhì),點到直線的距離:直線外一點到直線的垂線段的長度,叫做點到直線的距離.
解:(1)在平面內(nèi),過直線外一點有且只有一條直線與已知直線垂直.(對)
(2)過直線上一點不存在直線與已知直線垂直. (錯)
(3)過直線l外一點A作l的垂線,垂線的長度叫做點A到直線l的距離.(錯)
(4)一條線段有無數(shù)條垂線.(對)
(5)如圖,線段AB與線段CD不可能互相垂直,因為它們不可能相交.(錯)
(6)互相垂直的兩條直線形成的四個角都等于90°. (對)
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對稱)變換和平移變換.一次數(shù)學(xué)活動課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動.
(1)第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點O,Rt△ADC可以由Rt△ABC經(jīng)過一種變換得到,請你寫出這種變換的過程 ▲ .
(2)第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點B落在EF上的點B'處(如圖2-2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請寫出求解過程.
(3)第三小組的同學(xué),在一個矩形紙片上按照圖3-1的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動AC的長度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,判斷以AD、AF和AH為三邊能否構(gòu)成三角形?若能構(gòu)成,請判斷這個三角形的形狀,若不能構(gòu)成,請說明理由.
(4)探究活動結(jié)束后,老師給大家留下了一道探究題:如圖4-1,已知AA'=BB'=CC'=4,∠AOB'=∠BOC'=∠COA'=60°,請利用圖形變換探究S△AOB'+S△BOC'+S△COA'與的大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆江蘇泰興濟(jì)川中學(xué)九年級中考一模數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,在ABCD中,平分交于點,平分交于點。
【小題1】求證:
【小題2】若,則判斷四邊形是什么特殊四邊形,請證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省無錫市新區(qū)九年級二模數(shù)學(xué)卷(解析版) 題型:解答題
在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對稱)變換和平移變換.一次數(shù)學(xué)活動課上,老師組織大家利用矩形進(jìn)行圖形變換的探究活動.
(1)第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點O,Rt△ADC可以由Rt△ABC經(jīng)過一種變換得到,請你寫出這種變換的過程 ▲ .
(2)第二小組同學(xué)將矩形紙片ABCD按如下順序進(jìn)行操作:對折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點B落在EF上的點B'處(如圖2-2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請寫出求解過程.
(3)第三小組的同學(xué),在一個矩形紙片上按照圖3-1的方式剪下△ABC,其中BA=BC,將△ABC沿著直線AC的方向依次進(jìn)行平移變換,每次均移動AC的長度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,判斷以AD、AF和AH為三邊能否構(gòu)成三角形?若能構(gòu)成,請判斷這個三角形的形狀,若不能構(gòu)成,請說明理由.
(4)探究活動結(jié)束后,老師給大家留下了一道探究題:如圖4-1,已知AA'=BB'=CC'=4,∠AOB'=∠BOC'=∠COA'=60°,請利用圖形變換探究S△AOB'+S△BOC'+S△COA'與的大小關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com