【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的位置如圖所示.現(xiàn)將△ABC平移,使得點(diǎn)A移至圖中的點(diǎn)A'的位置.
(1)平移后所得△ABC的頂點(diǎn)B的坐標(biāo)為 ,C的坐標(biāo)為 ;
(2)平移過(guò)程中△ABC掃過(guò)的面積為 ;
(3)將直線(xiàn)AB以每秒1個(gè)單位長(zhǎng)度的速度向右平移,則平移 秒時(shí)該直線(xiàn)恰好經(jīng)過(guò)點(diǎn)C.
【答案】(1)(5,3),(8,4);(2);(3)5
【解析】
(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)、的對(duì)應(yīng)點(diǎn)、的位置,順次連接之后,根據(jù)平面直角坐標(biāo)系寫(xiě)出點(diǎn),的坐標(biāo);
(2)結(jié)合圖形可知所求為線(xiàn)段掃過(guò)的圖形為平行四邊形加上三角形的面積,分別求解之后再求和即可;
(3)結(jié)合網(wǎng)格結(jié)構(gòu)可知線(xiàn)段AB向右平移時(shí),A點(diǎn)坐標(biāo)變?yōu)椋?/span>8,0)時(shí)滿(mǎn)足題意,據(jù)此可解答本題.
解:(1)根據(jù)題意畫(huà)圖:
∴,;
(2)如圖,
∵,
,
∴平移過(guò)程中△ABC掃過(guò)的面積為;
(3)結(jié)合網(wǎng)格結(jié)構(gòu)可知線(xiàn)段AB向右平移時(shí),A點(diǎn)坐標(biāo)變?yōu)椋?/span>8,0)時(shí)滿(mǎn)足題意,
此時(shí)A點(diǎn)向右平移了5個(gè)單位長(zhǎng)度,
∵直線(xiàn)AB以每秒1個(gè)單位長(zhǎng)度的速度向右平移,
∴平移5秒時(shí)該直線(xiàn)恰好經(jīng)過(guò)點(diǎn)C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】每年11月的最后一個(gè)星期四是感恩節(jié),小龍調(diào)查了初三年級(jí)部分同學(xué)在感恩節(jié)當(dāng)天將以何種方式表達(dá)感謝幫助過(guò)自己的人.他將調(diào)查結(jié)果分為如下四類(lèi):A類(lèi)﹣﹣當(dāng)面致謝;B類(lèi)﹣﹣打電話(huà);C類(lèi)﹣﹣發(fā)短信息或微信;D類(lèi)﹣﹣寫(xiě)書(shū)信.他將調(diào)查結(jié)果繪制成如圖不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
請(qǐng)你根據(jù)圖中提供的信息完成下列各題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在A類(lèi)的同學(xué)中,有3人來(lái)自同一班級(jí),其中有1人學(xué)過(guò)主持.現(xiàn)準(zhǔn)備從他們3人中隨機(jī)抽出兩位同學(xué)主持感恩節(jié)主題班會(huì)課,請(qǐng)你用樹(shù)狀圖或表格求出抽出的兩人都沒(méi)有學(xué)過(guò)主持的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,點(diǎn)B(a,0),點(diǎn)C(0,b)分別在x軸,y軸上,其中a,b是二元一次方程的解,且a為不等式的最大整數(shù)解.
(1)證明:OB=OC;
(2)如圖1,連接AB,過(guò)點(diǎn)A作AD⊥AB交y軸于點(diǎn)D,在射線(xiàn)AD上截取AE=AB,連接CE,取CE的中點(diǎn)F,連接AF并延長(zhǎng)至點(diǎn)G,使FG=AF,連接CG,OA.當(dāng)點(diǎn)A在第一象限內(nèi)運(yùn)動(dòng)(AD不經(jīng)過(guò)點(diǎn)C)時(shí),證明:∠OAF的大小不變;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在正方形ABCD外取一點(diǎn)E,連接AE,BE,DE,過(guò)點(diǎn)A作AE的垂線(xiàn)交DE于點(diǎn)P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線(xiàn)AE的距離為;③EB⊥ED;④S△APD+S△APB=1+.其中正確結(jié)論的序號(hào)是( 。
A. ①②③ B. ①②④ C. ②③④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,點(diǎn)E,F分別在AB,CD上,AF⊥CE,垂足為點(diǎn)O,∠1=∠B,
∠A+∠2=90°.求證:AB∥CD.
證明:如圖,
∵∠1=∠B(已知)
∴CE∥BF(同位角相等,兩直線(xiàn)平行)
______________
∴∠AFC+∠2=90°(等式性質(zhì))
∵∠A+∠2=90°(已知)
∴∠AFC=∠A(同角或等角的余角相等)
∴AB∥CD(內(nèi)錯(cuò)角相等,兩直線(xiàn)平行)
請(qǐng)你仔細(xì)觀察下列序號(hào)所代表的內(nèi)容:
①∴∠AOE=90°(垂直的定義)
②∴∠AFB=90°(等量代換)
③∵AF⊥CE(已知)
④∵∠AFC+∠AFB+∠2=180°(平角的定義)
⑤∴∠AOE=∠AFB(兩直線(xiàn)平行,同位角相等)
橫線(xiàn)處應(yīng)填寫(xiě)的過(guò)程,順序正確的是( 。
A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠ABC=63°,∠ECB=117°.
(1) AB與ED平行嗎?為什么?
(2)若∠P=∠Q,則∠1與∠2是否相等?說(shuō)說(shuō)你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是⊙O的切線(xiàn),切點(diǎn)為A,AB是⊙O的弦.過(guò)點(diǎn)B作BC∥AD,交⊙O于點(diǎn)C,連接AC,過(guò)點(diǎn)C作CD∥AB,交AD于點(diǎn)D.連接AO并延長(zhǎng)交BC于點(diǎn)M,交過(guò)點(diǎn)C的直線(xiàn)于點(diǎn)P,且∠BCP=∠ACD.
(1)判斷直線(xiàn)PC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AB=9,BC=6.求PC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E是AB的中點(diǎn),連接DE并延長(zhǎng)交CB的延長(zhǎng)線(xiàn)于點(diǎn)F,點(diǎn)G在邊BC上,且∠GDF=∠ADF.
(1)求證:△ADE≌△BFE;
(2)連接EG,判斷EG與DF的位置關(guān)系并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P是正方形ABCD邊AB上一點(diǎn)(不與A、B重合),連接PD并將線(xiàn)段PD繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,得線(xiàn)段PE,連接BE,則∠CBE等于( )
A. 75°B. 60°C. 30°D. 45°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com