【題目】火鍋是重慶的一張名片,深受廣大市民的喜愛.重慶某火鍋店采取堂食、外賣、店外擺攤(簡(jiǎn)稱擺攤)三種方式經(jīng)營(yíng),6月份該火鍋店堂食、外賣、擺攤?cè)N方式的營(yíng)業(yè)額之比為3:5:2.隨著促進(jìn)消費(fèi)政策的出臺(tái),該火鍋店老板預(yù)計(jì)7月份總營(yíng)業(yè)額會(huì)增加,其中擺攤增加的營(yíng)業(yè)額占總增加的營(yíng)業(yè)額的,則擺攤的營(yíng)業(yè)額將達(dá)到7月份總營(yíng)業(yè)額的,為使堂食、外賣7月份的營(yíng)業(yè)額之比為8:5,則7月份外賣還需增加的營(yíng)業(yè)額與7月份總營(yíng)業(yè)額之比是__________.
【答案】
【解析】
先根據(jù)題意設(shè)出相應(yīng)的未知數(shù),再結(jié)合題目的等量關(guān)系列出相應(yīng)的方程組,最后求解即可求得答案.
解:設(shè)6月份該火鍋店堂食、外賣、擺攤?cè)N方式的營(yíng)業(yè)額分別為3k,5k,2k,7月份總增加的營(yíng)業(yè)額為m,則7月份擺攤增加的營(yíng)業(yè)額為m,設(shè)7月份外賣還需增加的營(yíng)業(yè)額為x.
∵7月份擺攤的營(yíng)業(yè)額是總營(yíng)業(yè)額的,且7月份的堂食、外賣營(yíng)業(yè)額之比為8:5,
∴7月份的堂食、外賣、擺攤?cè)N方式的營(yíng)業(yè)額之比為8:5:7,
∴設(shè)7月份的堂食、外賣、擺攤?cè)N方式的營(yíng)業(yè)額分別為8a,5a,7a,
由題意可知: ,
解得: ,
∴,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線交軸于點(diǎn)A,交軸于點(diǎn)B,拋物線經(jīng)過點(diǎn)A,交軸于點(diǎn),點(diǎn)P為直線AB下方拋物線上一動(dòng)點(diǎn),過點(diǎn)P作于D,連接AP.
(1)求拋物線的解析式;
(2)若以點(diǎn)為頂點(diǎn)的三角形與相似,求點(diǎn)P的坐標(biāo);
(3)將繞點(diǎn)A旋轉(zhuǎn),當(dāng)點(diǎn)O的對(duì)應(yīng)點(diǎn)落在拋物線的對(duì)稱軸上時(shí),請(qǐng)直接寫出點(diǎn)B的對(duì)應(yīng)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線:的頂點(diǎn)為,與軸相交于點(diǎn),先將拋物線沿軸翻折,再向右平移p個(gè)單位長(zhǎng)度后得到拋物,直線;經(jīng)過,兩點(diǎn).
(1)求點(diǎn)的坐標(biāo),并結(jié)合圖象直接寫出不等式:的解集;
(2)若拋物線的頂點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,求p的值及拋物線的解析式;
(3)若拋物線與軸的交點(diǎn)為、(點(diǎn)、分別與拋物線上點(diǎn)、對(duì)應(yīng)),試問四邊形是何種特殊四邊形?并說明其理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】疫情防控,我們一直在堅(jiān)守.某居委會(huì)組織兩個(gè)檢查組,分別對(duì)“居民體溫”和“居民安全出行”的情況進(jìn)行抽查.若這兩個(gè)檢查組在轄區(qū)內(nèi)的某三個(gè)校區(qū)中各自隨機(jī)抽取一個(gè)小區(qū)進(jìn)行檢查,則他們恰好抽到同一個(gè)小區(qū)的概率是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形,對(duì)角線的垂直平分線分別交,和于點(diǎn),,.,的延長(zhǎng)線交于點(diǎn),且,連接.
(1)求證:
(2)求證:平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與直線AB相交于A,B兩點(diǎn),其中,.
(1)求該拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)P為直線AB下方拋物線上的任意一點(diǎn),連接PA,PB,求面積的最大值;
(3)將該拋物線向右平移2個(gè)單位長(zhǎng)度得到拋物線,平移后的拋物線與原拋物線相交于點(diǎn)C,點(diǎn)D為原拋物線對(duì)稱軸上的一點(diǎn),在平面直角坐標(biāo)系中是否存在點(diǎn)E,使以點(diǎn)B,C,D,E為頂點(diǎn)的四邊形為菱形,若存在,請(qǐng)直接寫出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,,.P為線段上的一動(dòng)點(diǎn),且和B、C不重合,連接,過點(diǎn)P作交射線于點(diǎn)E.
聰聰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)這個(gè)問題進(jìn)行了研究:
(1)通過推理,他發(fā)現(xiàn),請(qǐng)你幫他完成證明.
(2)利用幾何畫板,他改變的長(zhǎng)度,運(yùn)動(dòng)點(diǎn)P,得到不同位置時(shí),、的長(zhǎng)度的對(duì)應(yīng)值:
當(dāng)時(shí),得表1:
… | 1 | 2 | 3 | 4 | 5 | … | |
… | 0.83 | 1.33 | 1.50 | 1.33 | 0.83 | … |
當(dāng)時(shí),得表2:
… | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … | |
… | 1.17 | 2.00 | 2.50 | 2.67 | 2.50 | 2.00 | 1.17 | … |
這說明,點(diǎn)P在線段上運(yùn)動(dòng)時(shí),要保證點(diǎn)E總在線段上,的長(zhǎng)度應(yīng)有一定的限制.
①填空:根據(jù)函數(shù)的定義,我們可以確定,在和的長(zhǎng)度這兩個(gè)變量中,_____的長(zhǎng)度為自變量,_____的長(zhǎng)度為因變量;
②設(shè),當(dāng)點(diǎn)P在線段上運(yùn)動(dòng)時(shí),點(diǎn)E總在線段上,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx-5(a,b是常數(shù),a0)的圖象與x軸交于點(diǎn)A(-1,0)和點(diǎn)B(5,0).動(dòng)直線y=t(t為常數(shù))與拋物線交于不同的兩點(diǎn)P、Q(點(diǎn)P在Q的左側(cè)).
(1)求拋物線的解析式;
(2)動(dòng)直線y=t與y軸交于點(diǎn)C,若CQ=3CP,求t的值;
(3)將拋物線y=ax2+bx-5在x軸下方的部分沿x軸翻折,若動(dòng)直線y=t與翻折后的圖像交于點(diǎn)M、N,點(diǎn)M、N能否是線段PQ的三等分點(diǎn)?若能,求PQ的長(zhǎng)度;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在ABCD的內(nèi)部,AF∥BE,DF∥CE.
(1)求證BCE≌ADF;
(2)若ABCD的面積為96cm2,求四邊形AEDF的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com