【題目】對(duì)于一個(gè)函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)﹣1≤x≤1時(shí),﹣1≤y≤1,則稱這個(gè)函數(shù)為“閉函數(shù)”.例如:y=x,y=﹣x均是“閉函數(shù)”(如圖所示).已知:y=ax2+bx+c(a≠0)是“閉函數(shù)”,且拋物線經(jīng)過(guò)點(diǎn)A(1,﹣1)和點(diǎn)B(﹣1,1).
(1)請(qǐng)說(shuō)明a、c的數(shù)量關(guān)系并確定b的取值;
(2)請(qǐng)你確定a的取值范圍.
【答案】(1)a與c互為相反數(shù), b=﹣1;(2)﹣≤a<0或0<a≤
【解析】
(1)把A、B的坐標(biāo)代入函數(shù)解析式,即可求出答案;
(2)代入得出拋物線表達(dá)式為y=ax2﹣x﹣a(a≠0),得出對(duì)稱軸為,再進(jìn)行判斷即可.
解:(1)∵拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)點(diǎn)A(1,﹣1)和點(diǎn)B(﹣1,1),
∴a+b+c=﹣1 ①,a﹣b+c=1 ②
①+②得:a+c=0 即a與c互為相反數(shù),
①﹣②得:b=﹣1;
(2)由(1)得:拋物線表達(dá)式為y=ax2﹣x﹣a(a≠0),
∴對(duì)稱軸為,
當(dāng)a<0時(shí),拋物線開口向下,且,
∵拋物線y=ax2﹣x﹣a(a≠0)經(jīng)過(guò)點(diǎn)A(1,﹣1)和點(diǎn)B(﹣1,1),
畫圖可知,當(dāng)時(shí)符合題意,此時(shí)﹣≤a<0,
當(dāng)時(shí),圖象不符合﹣1≤y≤1的要求,舍去,
同理,當(dāng)a>0時(shí),拋物線開口向上,且,
畫圖可知,當(dāng)時(shí)符合題意,此時(shí)0<a≤,
當(dāng)時(shí),圖象不符合﹣1≤y≤1的要求,舍去,
綜上所述:a的取值范圍是﹣≤a<0或0<a≤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是邊AB的中點(diǎn),△EBC沿直線EC翻折,使B點(diǎn)落在矩形ABCD內(nèi)部的點(diǎn)P處,聯(lián)結(jié)AP并延長(zhǎng)AP交CD于點(diǎn)F,聯(lián)結(jié)BP交CE于點(diǎn)Q.
(1)求證:四邊形AECF是平行四邊形;
(2)如果PA=PE,求證:△APB≌△EPC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,若P,Q為某個(gè)菱形相鄰的兩個(gè)頂點(diǎn),且該菱形的兩條對(duì)角線分別與x軸,y軸平行或重合,則稱該菱形為點(diǎn)P,Q的“相關(guān)菱形”.圖1為點(diǎn)P,Q的“相關(guān)菱形”的一個(gè)示意圖.
已知點(diǎn)A的坐標(biāo)為(1,4),點(diǎn)B的坐標(biāo)為(b,0).
(1)若b=3,則R(﹣1,0),S(5,4),T(6,4)中能夠成為點(diǎn)A,B的“相關(guān)菱形”頂點(diǎn)的是 ;
(2)若點(diǎn)A,B的“相關(guān)菱形”為正方形,求b的值;
(3)⊙B的半徑為,點(diǎn)C的坐標(biāo)為(2,4).若⊙B上存在點(diǎn)M,在線段AC上存在點(diǎn)N,使點(diǎn)M,N的“相關(guān)菱形”為正方形,請(qǐng)直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)部分同學(xué)參加全國(guó)初中數(shù)學(xué)競(jìng)賽,取得了優(yōu)異的成績(jī),指導(dǎo)老師統(tǒng)計(jì)了所有參賽同學(xué)的成績(jī)(成績(jī)都是整數(shù),試題滿分120分),并且繪制了“頻率分布直方圖”(如圖).請(qǐng)回答:
(1)該中學(xué)參加本次數(shù)學(xué)競(jìng)賽的有多少名同學(xué)?
(2)如果成績(jī)?cè)?/span>90分以上(含90分)的同學(xué)獲獎(jiǎng),那么該中學(xué)參賽同學(xué)的獲獎(jiǎng)率是多少?
(3)這次競(jìng)賽成績(jī)的中位數(shù)落在哪個(gè)分?jǐn)?shù)段內(nèi)?
(4)圖中還提供了其它信息,例如該中學(xué)沒有獲得滿分的同學(xué)等等,請(qǐng)?jiān)賹懗鰞蓷l信息.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=BC=2,點(diǎn)P為BC邊上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C重合).點(diǎn)P關(guān)于直線AC,AB的對(duì)稱點(diǎn)分別為M,N,連接MN交AC于點(diǎn)E,交AB于點(diǎn)F.
(1)當(dāng)點(diǎn)P為線段BC的中點(diǎn)時(shí),求∠M的正切值.
(2)當(dāng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí)(不與B,C重合),連接AM,AN,求證:
①△AMN為等腰直角三角形;
②△AEF∽△BAM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了弘揚(yáng)傳統(tǒng)文化,提高學(xué)生文明意識(shí),育紅學(xué)校組織全校80個(gè)班級(jí)進(jìn)行“誦經(jīng)典,傳文明”演講賽,比賽后對(duì)各班成績(jī)進(jìn)行了整理,分成4個(gè)小組(x表示成績(jī),單位:分):A組:60≤x<70;B組:70≤x<80;C組:80≤x<90;D組:90≤x<100,并且繪制了如右不完整的扇形統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,解答下列問題:
(1)求扇形統(tǒng)計(jì)圖中,B組對(duì)應(yīng)的圓心角是多少度?
(2)學(xué)校從D組中選取了2名男生和2名女生組成代表隊(duì)參加了區(qū)級(jí)比賽,由于表現(xiàn)突出,被要求再?gòu)倪@4名學(xué)生中隨機(jī)選取兩名同學(xué)參加市級(jí)比賽,請(qǐng)用列表或畫樹狀圖的方法,求恰好選中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B、C.
(1)求拋物線的解析式;
(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動(dòng)點(diǎn),其橫坐標(biāo)為t,設(shè)拋物線對(duì)稱軸l與x軸交于一點(diǎn)E,連接PE,交CD于F,求以C、E、F為頂點(diǎn)三角形與△COD相似時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,CD=3cm,BC=4cm,連接BD,并過(guò)點(diǎn)C作CN⊥BD,垂足為N,直線l垂直BC,分別交BD、BC于點(diǎn)P、Q.直線l從AB出發(fā),以每秒1cm的速度沿BC方向勻速運(yùn)動(dòng)到CD為止;點(diǎn)M沿線段DA以每秒1cm的速度由點(diǎn)D向點(diǎn)A勻速運(yùn)動(dòng),到點(diǎn)A為止,直線1與點(diǎn)M同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)線段CN= ;
(2)連接PM和QN,當(dāng)四邊形MPQN為平行四邊形時(shí),求t的值;
(3)在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)t為何值時(shí)△PMN的面積取得最大值,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小華設(shè)計(jì)的“作一個(gè)角等于已知角的2倍”的尺規(guī)作圖過(guò)程.
已知:.
求作:,使得.
作法:如圖,
①在射線上任取一點(diǎn);
②作線段的垂直平分線,交于點(diǎn),交于點(diǎn);
③連接;
所以即為所求作的角.
根據(jù)小華設(shè)計(jì)的尺規(guī)作圖過(guò)程,
(1)使用直尺和圓規(guī)補(bǔ)全圖形(保留作圖痕跡);
(2)完成下面的證明(說(shuō)明:括號(hào)里填寫推理的依據(jù)).
證明:∵是線段的垂直平分線,
∴______(______)
∴.
∵(______)
∴.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com