【題目】有一次,小明坐著輪船由A點(diǎn)出發(fā)沿正東方向AN航行,在A點(diǎn)望湖中小島M,測(cè)得∠MAN=30°,航行100米到達(dá)B點(diǎn)時(shí),測(cè)得∠MBN=45°,你能算出A點(diǎn)與湖中小島M的距離嗎?

【答案】解:作MC⊥AN于點(diǎn)C,
設(shè)AM=x米,
∵∠MAN=30°,
∴MC= m,
∵∠MBN=45°,
∴BC=MC= m
在Rt△AMC中,
AM2=AC2+MC2 ,
即:x2=( +100)2+( 2 ,
解得:x=50+50 米,
答:A點(diǎn)與湖中小島M的距離為50+50 米.
【解析】作MC⊥AN于點(diǎn)C,設(shè)AM=x米,根據(jù)∠MAN=30°表示出MC= m,根據(jù)∠MBN=45°,表示出BC=MC= m然后根據(jù)在Rt△AMC中有AM2=AC2+MC2列出法方程求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品經(jīng)過連續(xù)兩次降價(jià),銷售單價(jià)由原來200元降到162元.設(shè)平均每次降價(jià)的百分率為x,根據(jù)題意可列方程為( 。
A.200(1﹣x)2=162
B.200(1+x)2=162
C.162(1+x)2=200
D.162(1﹣x)2=200

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2015年諾貝爾生理學(xué)或醫(yī)學(xué)獎(jiǎng)得主中國(guó)科學(xué)家屠呦呦,發(fā)現(xiàn)了一種長(zhǎng)度約為0.000000456毫米的病毒,把0.000000456用科學(xué)記數(shù)法表示為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中不正確的有( ) ①單項(xiàng)式﹣2πR2(π是圓周率)的系數(shù)是﹣2②23x5是8次單項(xiàng)式③xy﹣1是一次二項(xiàng)式.
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從車站向東走400米,再向北走500米到小紅家;從車站向北走500米,再向西走200米到小強(qiáng)家,則( )
A.小強(qiáng)家在小紅家的正東
B.小強(qiáng)家在小紅家的正西
C.小強(qiáng)家在小紅家的正南
D.小強(qiáng)家在小紅家的正北

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖,在菱形ABCD中,AB=2,∠DAB=60°,點(diǎn)E是AD邊的中點(diǎn).點(diǎn)M是AB邊上一動(dòng)點(diǎn)(不與點(diǎn)A重合),延長(zhǎng)ME交射線CD于點(diǎn)N,連接MD、AN.

(1)求證:四邊形AMDN是平行四邊形;
(2)填空:①當(dāng)AM的值為時(shí),四邊形AMDN是矩形;
②當(dāng)AM的值為時(shí),四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】人一根頭發(fā)的直徑大約為 0.000 071 8 米,數(shù)“0.000 071 8”用科學(xué)記數(shù)法表示正確的是 ( )

A.7.18×10 5B.0.718×10 5

C.7.18×10 5D.0.718×10 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,CD⊥AB于點(diǎn)D,AO平分∠BAC,交CD于點(diǎn)O,EAB上一點(diǎn),且AE=AC。

1)求證:△AOC≌△A0E

2)求證:OE∥BC。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線與x軸交于O,A,點(diǎn)B在拋物線上且橫坐標(biāo)為2.

(1)如圖1,△AOB的面積是多少?

(2)如圖1,在線段AB上方的拋物線上有一點(diǎn)K,當(dāng)△ABK的面積最大時(shí),求點(diǎn)K的坐標(biāo)及△ABK的面積;

(3)在(2)的條件下,點(diǎn)H 在y軸上運(yùn)動(dòng),點(diǎn)I在x軸上運(yùn)動(dòng). 則當(dāng)四邊形BHIK周長(zhǎng)最小時(shí),求出H、I的坐標(biāo)以及四邊形BHIK周長(zhǎng)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案