如圖,△ABC為等邊三角形,AE=CD,AD、BE相交于點P,BQ⊥AD與Q,PQ=4,PE=1.
(1)求證:△ABE≌△CAD;
(2)求證:∠BPQ=60°;
(3)求AD的長.
(1)(2)見解析;(3)9

試題分析:(1)由于△ABC是等邊三角形,那么有AB=AC,∠BAE=∠ACD=60°,而AE=CD,利用SAS可證△BAE≌△ACD;
(2)由△BAE≌△ACD可得∠1=∠2,根據(jù)∠BAE=∠1+∠BAD=60°,等量代換則有∠2+∠BAD=60°,再利用三角形外角性質可得∠BPQ=60°;
(3)在Rt△BPQ,易求∠PBQ=30°,于是可求得BP,從而可求得BE,而△BAE≌△ACD,即可得到結果.
(1)∵△ABC是等邊三角形,
∴AB=AC,∠BAE=∠ACD=60°,
又∵AE=CD,
∴△BAE≌△ACD,
(2) 如圖所示:

∵△BAE≌△ACD,
∴∠1=∠2,
∵∠BAE=∠1+∠BAD=60°,
∴∠BAE=∠2+∠BAD=60°,
∴∠BPQ=60°;
(3)∵BQ⊥AD,
∴∠BQP=90°,
又∵∠BPQ=60°,
∴∠PBQ=30°,
∴BP=2PQ=2×4=8,
∴BE=BP+PE=8+1=9,
由(1)知△BAE≌△ACD,
∴AD=BE=9.
點評:解答本題的關鍵是熟練掌握含有30°的直角三角形的性質:30°角所對的直角邊是斜邊的一半.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

以線段、b、c 的長為邊長能構成直角三角形的是
A.=3,b=4,c="6" B.=1,b=,c=
C.=5,b=6,c=8D.=,b=2,c=

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列各組數(shù)能構成直角三角形的是(   )
A.1,2,3B.4,5,6C.6,8,10D.7,9,11

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6㎝,則△DEB的周長是(     )
A.6㎝B.4㎝C.10㎝D.以上都不對

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖:若△ABE≌△ACF,且AB=5,AE=2,則EC的長為(     )
A.2B.3 C.5D.2.5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,是屋架設計圖的一部分,點D是斜梁AB的中點,立柱BC、DE垂直于橫梁AC,AB=8m,∠A=30°,則DE等于(   ).

A.1m
B.2m
C.3m
D.4m

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若一直角三角形兩邊長分別為12和5,則第三邊長為 (    )
A.13.B.13或C.13或15.D.15.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,點D為BC邊上的點,BE平分∠ABC交AD于點E.若∠ABE=15°,∠BAD=40°,求∠ADC的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

操作與運用:
(1)在7×7的方格紙中,以線段AB為一邊,畫一個正方形;

(2)若圖中小方格的面積為1平方厘米,求所畫的正方形的面積和邊長.

查看答案和解析>>

同步練習冊答案